TSTP Solution File: CAT010-1 by SPASS---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SPASS---3.9
% Problem  : CAT010-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp
% Command  : run_spass %d %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Fri Jul 15 00:07:30 EDT 2022

% Result   : Unsatisfiable 0.55s 0.72s
% Output   : Refutation 0.55s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   24 (   8 unt;   0 nHn;  24 RR)
%            Number of literals    :   52 (   0 equ;  36 neg)
%            Maximal clause size   :    4 (   2 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    5 (   4 usr;   1 prp; 0-3 aty)
%            Number of functors    :    9 (   9 usr;   7 con; 0-2 aty)
%            Number of variables   :    0 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    defined(b,a),
    file('CAT010-1.p',unknown),
    [] ).

cnf(2,axiom,
    ~ equal(codomain(compose(b,a)),codomain(b)),
    file('CAT010-1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ defined(u,v)
    | product(u,v,compose(u,v)) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(4,axiom,
    ( ~ product(u,v,w)
    | defined(u,v) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ defined(u,v)
    | ~ product(w,x,u)
    | defined(x,v) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ defined(u,v)
    | ~ product(w,v,x)
    | ~ product(y,w,u)
    | defined(y,x) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(8,axiom,
    ( ~ defined(u,v)
    | ~ product(w,x,v)
    | defined(u,w) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(13,axiom,
    identity_map(codomain(u)),
    file('CAT010-1.p',unknown),
    [] ).

cnf(17,axiom,
    product(codomain(u),u,u),
    file('CAT010-1.p',unknown),
    [] ).

cnf(18,axiom,
    ( ~ identity_map(u)
    | ~ defined(u,v)
    | product(u,v,v) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(19,axiom,
    ( ~ identity_map(u)
    | ~ defined(v,u)
    | product(v,u,v) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(20,axiom,
    ( ~ product(u,v,w)
    | ~ product(u,v,x)
    | equal(x,w) ),
    file('CAT010-1.p',unknown),
    [] ).

cnf(21,plain,
    ( ~ product(u,v,codomain(b))
    | ~ product(u,v,codomain(compose(b,a))) ),
    inference(res,[status(thm),theory(equality)],[20,2]),
    [iquote('0:Res:20.2,2.0')] ).

cnf(28,plain,
    ( ~ defined(u,v)
    | defined(u,codomain(v)) ),
    inference(res,[status(thm),theory(equality)],[17,8]),
    [iquote('0:Res:17.0,8.1')] ).

cnf(127,plain,
    ( ~ defined(u,v)
    | ~ defined(w,v)
    | ~ product(x,u,w)
    | defined(x,compose(u,v)) ),
    inference(res,[status(thm),theory(equality)],[3,6]),
    [iquote('0:Res:3.1,6.1')] ).

cnf(130,plain,
    ( ~ defined(u,v)
    | ~ product(w,x,u)
    | defined(w,compose(x,v)) ),
    inference(mrr,[status(thm)],[127,5]),
    [iquote('0:MRR:127.0,5.2')] ).

cnf(618,plain,
    ( ~ identity_map(u)
    | ~ defined(u,codomain(compose(b,a)))
    | ~ product(u,codomain(compose(b,a)),codomain(b)) ),
    inference(res,[status(thm),theory(equality)],[18,21]),
    [iquote('0:Res:18.2,21.1')] ).

cnf(621,plain,
    ( ~ identity_map(u)
    | ~ product(u,codomain(compose(b,a)),codomain(b)) ),
    inference(mrr,[status(thm)],[618,4]),
    [iquote('0:MRR:618.1,4.1')] ).

cnf(1003,plain,
    ( ~ defined(u,v)
    | defined(codomain(u),compose(u,v)) ),
    inference(res,[status(thm),theory(equality)],[17,130]),
    [iquote('0:Res:17.0,130.1')] ).

cnf(2572,plain,
    ( ~ identity_map(codomain(compose(b,a)))
    | ~ identity_map(codomain(b))
    | ~ defined(codomain(b),codomain(compose(b,a))) ),
    inference(res,[status(thm),theory(equality)],[19,621]),
    [iquote('0:Res:19.2,621.1')] ).

cnf(2573,plain,
    ~ defined(codomain(b),codomain(compose(b,a))),
    inference(ssi,[status(thm)],[2572,13]),
    [iquote('0:SSi:2572.1,2572.0,13.0,13.0')] ).

cnf(2576,plain,
    ~ defined(codomain(b),compose(b,a)),
    inference(res,[status(thm),theory(equality)],[28,2573]),
    [iquote('0:Res:28.1,2573.0')] ).

cnf(2578,plain,
    ~ defined(b,a),
    inference(res,[status(thm),theory(equality)],[1003,2576]),
    [iquote('0:Res:1003.1,2576.0')] ).

cnf(2579,plain,
    $false,
    inference(mrr,[status(thm)],[2578,1]),
    [iquote('0:MRR:2578.0,1.0')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : CAT010-1 : TPTP v8.1.0. Released v1.0.0.
% 0.03/0.12  % Command  : run_spass %d %s
% 0.12/0.33  % Computer : n023.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Sun May 29 17:06:12 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.55/0.72  
% 0.55/0.72  SPASS V 3.9 
% 0.55/0.72  SPASS beiseite: Proof found.
% 0.55/0.72  % SZS status Theorem
% 0.55/0.72  Problem: /export/starexec/sandbox2/benchmark/theBenchmark.p 
% 0.55/0.72  SPASS derived 2169 clauses, backtracked 0 clauses, performed 0 splits and kept 804 clauses.
% 0.55/0.72  SPASS allocated 77404 KBytes.
% 0.55/0.72  SPASS spent	0:00:00.37 on the problem.
% 0.55/0.72  		0:00:00.03 for the input.
% 0.55/0.72  		0:00:00.00 for the FLOTTER CNF translation.
% 0.55/0.72  		0:00:00.03 for inferences.
% 0.55/0.72  		0:00:00.00 for the backtracking.
% 0.55/0.72  		0:00:00.29 for the reduction.
% 0.55/0.72  
% 0.55/0.72  
% 0.55/0.72  Here is a proof with depth 5, length 24 :
% 0.55/0.72  % SZS output start Refutation
% See solution above
% 0.55/0.72  Formulae used in the proof : ba_defined prove_codomain_of_ba_equals_codomain_of_b closure_of_composition associative_property1 associative_property2 category_theory_axiom1 category_theory_axiom3 codomain_is_an_identity_map product_on_codomain identity1 identity2 composition_is_well_defined
% 0.55/0.72  
%------------------------------------------------------------------------------