TSTP Solution File: ARI717_1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : ARI717_1 : TPTP v8.2.0. Released v6.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : do_cvc5 %s %d

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May 29 16:34:35 EDT 2024

% Result   : Theorem 0.21s 0.51s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem    : ARI717_1 : TPTP v8.2.0. Released v6.3.0.
% 0.03/0.13  % Command    : do_cvc5 %s %d
% 0.14/0.34  % Computer : n013.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit   : 300
% 0.14/0.34  % WCLimit    : 300
% 0.14/0.34  % DateTime   : Mon May 27 05:34:54 EDT 2024
% 0.14/0.34  % CPUTime    : 
% 0.21/0.49  %----Proving TF0_ARI
% 0.21/0.51  --- Run --finite-model-find --decision=internal at 15...
% 0.21/0.51  % SZS status Theorem for /export/starexec/sandbox2/tmp/tmp.QfBrvDCPpF/cvc5---1.0.5_30048.smt2
% 0.21/0.51  % SZS output start Proof for /export/starexec/sandbox2/tmp/tmp.QfBrvDCPpF/cvc5---1.0.5_30048.smt2
% 0.21/0.51  (assume a0 (not (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X))))
% 0.21/0.51  (assume a1 true)
% 0.21/0.51  (step t1 (cl (not (= (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))))) (not (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0))) (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule equiv_pos2)
% 0.21/0.51  (step t2 (cl (= (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule refl)
% 0.21/0.51  (step t3 (cl (= (/ (- 1) 8) (/ (- 1) 8))) :rule refl)
% 0.21/0.51  (step t4 (cl (= (- 1) (- 1))) :rule refl)
% 0.21/0.51  (step t5 (cl (= (+ (/ 1 2) (/ (- 1) 8)) (/ 3 8))) :rule all_simplify)
% 0.21/0.51  (step t6 (cl (= (to_int (+ (/ 1 2) (/ (- 1) 8))) (to_int (/ 3 8)))) :rule cong :premises (t5))
% 0.21/0.51  (step t7 (cl (= (to_int (/ 3 8)) 0)) :rule all_simplify)
% 0.21/0.51  (step t8 (cl (= (to_int (+ (/ 1 2) (/ (- 1) 8))) 0)) :rule trans :premises (t6 t7))
% 0.21/0.51  (step t9 (cl (= (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8)))) (* (- 1) 0))) :rule cong :premises (t4 t8))
% 0.21/0.51  (step t10 (cl (= (* (- 1) 0) 0)) :rule all_simplify)
% 0.21/0.51  (step t11 (cl (= (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8)))) 0)) :rule trans :premises (t9 t10))
% 0.21/0.51  (step t12 (cl (= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) (+ (/ (- 1) 8) 0))) :rule cong :premises (t3 t11))
% 0.21/0.51  (step t13 (cl (= (+ (/ (- 1) 8) 0) (/ (- 1) 8))) :rule all_simplify)
% 0.21/0.51  (step t14 (cl (= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) (/ (- 1) 8))) :rule trans :premises (t12 t13))
% 0.21/0.51  (step t15 (cl (= 0 0)) :rule refl)
% 0.21/0.51  (step t16 (cl (= (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0) (>= (/ (- 1) 8) 0))) :rule cong :premises (t14 t15))
% 0.21/0.51  (step t17 (cl (= (>= (/ (- 1) 8) 0) false)) :rule all_simplify)
% 0.21/0.51  (step t18 (cl (= (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0) false)) :rule trans :premises (t16 t17))
% 0.21/0.51  (step t19 (cl (= (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) false))) :rule cong :premises (t2 t18))
% 0.21/0.51  (step t20 (cl (= (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) false) (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))))) :rule all_simplify)
% 0.21/0.51  (step t21 (cl (= (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))))) :rule trans :premises (t19 t20))
% 0.21/0.51  (step t22 (cl (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) :rule implies_neg1)
% 0.21/0.51  (anchor :step t23)
% 0.21/0.51  (assume t23.a0 (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))
% 0.21/0.51  (step t23.t1 (cl (or (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0))) :rule forall_inst :args ((:= X (/ (- 1) 8))))
% 0.21/0.51  (step t23.t2 (cl (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) :rule or :premises (t23.t1))
% 0.21/0.51  (step t23.t3 (cl (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) :rule resolution :premises (t23.t2 t23.a0))
% 0.21/0.51  (step t23 (cl (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) :rule subproof :discharge (t23.a0))
% 0.21/0.51  (step t24 (cl (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) :rule resolution :premises (t22 t23))
% 0.21/0.52  (step t25 (cl (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (not (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0))) :rule implies_neg2)
% 0.21/0.52  (step t26 (cl (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0)) (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0))) :rule resolution :premises (t24 t25))
% 0.21/0.52  (step t27 (cl (=> (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)) (>= (+ (/ (- 1) 8) (* (- 1) (to_int (+ (/ 1 2) (/ (- 1) 8))))) 0))) :rule contraction :premises (t26))
% 0.21/0.52  (step t28 (cl (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule resolution :premises (t1 t21 t27))
% 0.21/0.52  (step t29 (cl (not (= (not (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X))) (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) (not (not (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X)))) (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) :rule equiv_pos2)
% 0.21/0.52  (anchor :step t30 :args ((X Real) (:= X X)))
% 0.21/0.52  (step t30.t1 (cl (= X X)) :rule refl)
% 0.21/0.52  (step t30.t2 (cl (= (> (to_int (+ X (/ 1 2))) X) (not (<= (to_int (+ X (/ 1 2))) X)))) :rule all_simplify)
% 0.21/0.52  (step t30.t3 (cl (= (+ X (/ 1 2)) (+ (/ 1 2) X))) :rule all_simplify)
% 0.21/0.52  (step t30.t4 (cl (= (to_int (+ X (/ 1 2))) (to_int (+ (/ 1 2) X)))) :rule cong :premises (t30.t3))
% 0.21/0.52  (step t30.t5 (cl (= X X)) :rule refl)
% 0.21/0.52  (step t30.t6 (cl (= (<= (to_int (+ X (/ 1 2))) X) (<= (to_int (+ (/ 1 2) X)) X))) :rule cong :premises (t30.t4 t30.t5))
% 0.21/0.52  (step t30.t7 (cl (= (<= (to_int (+ (/ 1 2) X)) X) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) :rule all_simplify)
% 0.21/0.52  (step t30.t8 (cl (= (<= (to_int (+ X (/ 1 2))) X) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) :rule trans :premises (t30.t6 t30.t7))
% 0.21/0.52  (step t30.t9 (cl (= (not (<= (to_int (+ X (/ 1 2))) X)) (not (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule cong :premises (t30.t8))
% 0.21/0.52  (step t30.t10 (cl (= (> (to_int (+ X (/ 1 2))) X) (not (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule trans :premises (t30.t2 t30.t9))
% 0.21/0.52  (step t30 (cl (= (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X)) (exists ((X Real)) (not (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))))) :rule bind)
% 0.21/0.52  (step t31 (cl (= (exists ((X Real)) (not (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))))) :rule all_simplify)
% 0.21/0.52  (step t32 (cl (= (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X)) (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))))) :rule trans :premises (t30 t31))
% 0.21/0.52  (step t33 (cl (= (not (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X))) (not (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))))) :rule cong :premises (t32))
% 0.21/0.52  (step t34 (cl (= (not (not (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule all_simplify)
% 0.21/0.52  (step t35 (cl (= (not (exists ((X Real)) (> (to_int (+ X (/ 1 2))) X))) (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0)))) :rule trans :premises (t33 t34))
% 0.21/0.52  (step t36 (cl (forall ((X Real)) (>= (+ X (* (- 1) (to_int (+ (/ 1 2) X)))) 0))) :rule resolution :premises (t29 t35 a0))
% 0.21/0.52  (step t37 (cl) :rule resolution :premises (t28 t36))
% 0.21/0.52  
% 0.21/0.52  % SZS output end Proof for /export/starexec/sandbox2/tmp/tmp.QfBrvDCPpF/cvc5---1.0.5_30048.smt2
% 0.21/0.52  % cvc5---1.0.5 exiting
% 0.21/0.52  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------