TSTP Solution File: ARI613_1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : ARI613_1 : TPTP v8.2.0. Released v5.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : do_cvc5 %s %d

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May 29 16:34:15 EDT 2024

% Result   : Theorem 0.21s 0.55s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.13  % Problem    : ARI613_1 : TPTP v8.2.0. Released v5.1.0.
% 0.13/0.14  % Command    : do_cvc5 %s %d
% 0.13/0.35  % Computer : n016.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Mon May 27 05:03:38 EDT 2024
% 0.13/0.35  % CPUTime    : 
% 0.21/0.49  %----Proving TF0_ARI
% 0.21/0.55  --- Run --finite-model-find --decision=internal at 15...
% 0.21/0.55  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 15...
% 0.21/0.55  % SZS status Theorem for /export/starexec/sandbox/tmp/tmp.albBHafXJp/cvc5---1.0.5_21919.smt2
% 0.21/0.55  % SZS output start Proof for /export/starexec/sandbox/tmp/tmp.albBHafXJp/cvc5---1.0.5_21919.smt2
% 0.21/0.55  (assume a0 (not (=> (and (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (< X 1) (tptp.q X)))) (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0))))))
% 0.21/0.55  (assume a1 true)
% 0.21/0.55  (step t1 (cl (not (or (not (tptp.p 4)) (not (tptp.q (- 4))))) (not (tptp.p 4)) (not (tptp.q (- 4)))) :rule or_pos)
% 0.21/0.55  (step t2 (cl (not (tptp.p 4)) (not (tptp.q (- 4))) (not (or (not (tptp.p 4)) (not (tptp.q (- 4)))))) :rule reordering :premises (t1))
% 0.21/0.55  (step t3 (cl (not (= (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p 4)) (not (tptp.q (- 4))))))) (not (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4)))))) (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p 4)) (not (tptp.q (- 4)))))) :rule equiv_pos2)
% 0.21/0.55  (step t4 (cl (= (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))) :rule refl)
% 0.21/0.55  (step t5 (cl (= (* (- 1) (- 4)) 4)) :rule all_simplify)
% 0.21/0.55  (step t6 (cl (= (tptp.p (* (- 1) (- 4))) (tptp.p 4))) :rule cong :premises (t5))
% 0.21/0.55  (step t7 (cl (= (not (tptp.p (* (- 1) (- 4)))) (not (tptp.p 4)))) :rule cong :premises (t6))
% 0.21/0.55  (step t8 (cl (= (not (tptp.q (- 4))) (not (tptp.q (- 4))))) :rule refl)
% 0.21/0.55  (step t9 (cl (= (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4)))) (or (not (tptp.p 4)) (not (tptp.q (- 4)))))) :rule cong :premises (t7 t8))
% 0.21/0.55  (step t10 (cl (= (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p 4)) (not (tptp.q (- 4))))))) :rule cong :premises (t4 t9))
% 0.21/0.55  (step t11 (cl (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) :rule implies_neg1)
% 0.21/0.55  (anchor :step t12)
% 0.21/0.55  (assume t12.a0 (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))
% 0.21/0.55  (step t12.t1 (cl (or (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4)))))) :rule forall_inst :args ((:= Y (- 4))))
% 0.21/0.55  (step t12.t2 (cl (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) :rule or :premises (t12.t1))
% 0.21/0.55  (step t12.t3 (cl (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) :rule resolution :premises (t12.t2 t12.a0))
% 0.21/0.55  (step t12 (cl (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) :rule subproof :discharge (t12.a0))
% 0.21/0.55  (step t13 (cl (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) :rule resolution :premises (t11 t12))
% 0.21/0.55  (step t14 (cl (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) (not (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4)))))) :rule implies_neg2)
% 0.21/0.55  (step t15 (cl (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4))))) (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4)))))) :rule resolution :premises (t13 t14))
% 0.21/0.55  (step t16 (cl (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p (* (- 1) (- 4)))) (not (tptp.q (- 4)))))) :rule contraction :premises (t15))
% 0.21/0.55  (step t17 (cl (=> (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))) (or (not (tptp.p 4)) (not (tptp.q (- 4)))))) :rule resolution :premises (t3 t10 t16))
% 0.21/0.55  (step t18 (cl (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) (or (not (tptp.p 4)) (not (tptp.q (- 4))))) :rule implies :premises (t17))
% 0.21/0.55  (step t19 (cl (not (not (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) :rule not_not)
% 0.21/0.55  (step t20 (cl (not (= (not (=> (and (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (< X 1) (tptp.q X)))) (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0))))) (not (=> (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))))) (not (not (=> (and (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (< X 1) (tptp.q X)))) (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0)))))) (not (=> (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))))) :rule equiv_pos2)
% 0.21/0.55  (anchor :step t21 :args ((X Int) (:= X X)))
% 0.21/0.55  (step t21.t1 (cl (= X X)) :rule refl)
% 0.21/0.55  (step t21.t2 (cl (= (< 3 X) (not (>= 3 X)))) :rule all_simplify)
% 0.21/0.55  (step t21.t3 (cl (= (>= 3 X) (not (>= X 4)))) :rule all_simplify)
% 0.21/0.55  (step t21.t4 (cl (= (not (>= 3 X)) (not (not (>= X 4))))) :rule cong :premises (t21.t3))
% 0.21/0.55  (step t21.t5 (cl (= (not (not (>= X 4))) (>= X 4))) :rule all_simplify)
% 0.21/0.55  (step t21.t6 (cl (= (not (>= 3 X)) (>= X 4))) :rule trans :premises (t21.t4 t21.t5))
% 0.21/0.55  (step t21.t7 (cl (= (< 3 X) (>= X 4))) :rule trans :premises (t21.t2 t21.t6))
% 0.21/0.55  (step t21.t8 (cl (= (tptp.p X) (tptp.p X))) :rule refl)
% 0.21/0.55  (step t21.t9 (cl (= (=> (< 3 X) (tptp.p X)) (=> (>= X 4) (tptp.p X)))) :rule cong :premises (t21.t7 t21.t8))
% 0.21/0.55  (step t21 (cl (= (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (>= X 4) (tptp.p X))))) :rule bind)
% 0.21/0.55  (step t22 (cl (= (forall ((X Int)) (=> (>= X 4) (tptp.p X))) (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))))) :rule all_simplify)
% 0.21/0.55  (step t23 (cl (= (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))))) :rule trans :premises (t21 t22))
% 0.21/0.55  (anchor :step t24 :args ((X Int) (:= X X)))
% 0.21/0.55  (step t24.t1 (cl (= X X)) :rule refl)
% 0.21/0.55  (step t24.t2 (cl (= (< X 1) (not (>= X 1)))) :rule all_simplify)
% 0.21/0.55  (step t24.t3 (cl (= (tptp.q X) (tptp.q X))) :rule refl)
% 0.21/0.55  (step t24.t4 (cl (= (=> (< X 1) (tptp.q X)) (=> (not (>= X 1)) (tptp.q X)))) :rule cong :premises (t24.t2 t24.t3))
% 0.21/0.55  (step t24 (cl (= (forall ((X Int)) (=> (< X 1) (tptp.q X))) (forall ((X Int)) (=> (not (>= X 1)) (tptp.q X))))) :rule bind)
% 0.21/0.55  (step t25 (cl (= (forall ((X Int)) (=> (not (>= X 1)) (tptp.q X))) (forall ((X Int)) (or (>= X 1) (tptp.q X))))) :rule all_simplify)
% 0.21/0.55  (step t26 (cl (= (forall ((X Int)) (=> (< X 1) (tptp.q X))) (forall ((X Int)) (or (>= X 1) (tptp.q X))))) :rule trans :premises (t24 t25))
% 0.21/0.55  (step t27 (cl (= (and (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (< X 1) (tptp.q X)))) (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))))) :rule cong :premises (t23 t26))
% 0.21/0.55  (anchor :step t28 :args ((X Int) (:= X X) (Y Int) (:= Y Y)))
% 0.21/0.55  (step t28.t1 (cl (= X X)) :rule refl)
% 0.21/0.55  (step t28.t2 (cl (= Y Y)) :rule refl)
% 0.21/0.55  (step t28.t3 (cl (= (tptp.p X) (tptp.p X))) :rule refl)
% 0.21/0.55  (step t28.t4 (cl (= (tptp.q Y) (tptp.q Y))) :rule refl)
% 0.21/0.55  (step t28.t5 (cl (= (= (+ X Y) 0) (= X (* (- 1) Y)))) :rule all_simplify)
% 0.21/0.55  (step t28.t6 (cl (= (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0)) (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y))))) :rule cong :premises (t28.t3 t28.t4 t28.t5))
% 0.21/0.55  (step t28 (cl (= (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0))) (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y)))))) :rule bind)
% 0.21/0.55  (step t29 (cl (= (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y)))) (not (forall ((X Int) (Y Int)) (not (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y)))))))) :rule all_simplify)
% 0.21/0.55  (step t30 (cl (= (forall ((X Int) (Y Int)) (not (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y))))) (forall ((X Int) (Y Int)) (or (not (tptp.p X)) (not (tptp.q Y)) (not (= X (* (- 1) Y))))))) :rule all_simplify)
% 0.21/0.55  (step t31 (cl (= (forall ((X Int) (Y Int)) (or (not (tptp.p X)) (not (tptp.q Y)) (not (= X (* (- 1) Y))))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)) (not (= (* (- 1) Y) (* (- 1) Y))))))) :rule all_simplify)
% 0.21/0.55  (anchor :step t32 :args ((Y Int) (:= Y Y)))
% 0.21/0.55  (step t32.t1 (cl (= Y Y)) :rule refl)
% 0.21/0.55  (step t32.t2 (cl (= (not (tptp.p (* (- 1) Y))) (not (tptp.p (* (- 1) Y))))) :rule refl)
% 0.21/0.55  (step t32.t3 (cl (= (not (tptp.q Y)) (not (tptp.q Y)))) :rule refl)
% 0.21/0.55  (step t32.t4 (cl (= (= (* (- 1) Y) (* (- 1) Y)) true)) :rule all_simplify)
% 0.21/0.55  (step t32.t5 (cl (= (not (= (* (- 1) Y) (* (- 1) Y))) (not true))) :rule cong :premises (t32.t4))
% 0.21/0.55  (step t32.t6 (cl (= (not true) false)) :rule all_simplify)
% 0.21/0.55  (step t32.t7 (cl (= (not (= (* (- 1) Y) (* (- 1) Y))) false)) :rule trans :premises (t32.t5 t32.t6))
% 0.21/0.55  (step t32.t8 (cl (= (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)) (not (= (* (- 1) Y) (* (- 1) Y)))) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)) false))) :rule cong :premises (t32.t2 t32.t3 t32.t7))
% 0.21/0.55  (step t32.t9 (cl (= (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)) false) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) :rule all_simplify)
% 0.21/0.55  (step t32.t10 (cl (= (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)) (not (= (* (- 1) Y) (* (- 1) Y)))) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) :rule trans :premises (t32.t8 t32.t9))
% 0.21/0.55  (step t32 (cl (= (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)) (not (= (* (- 1) Y) (* (- 1) Y))))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))) :rule bind)
% 0.21/0.55  (step t33 (cl (= (forall ((X Int) (Y Int)) (or (not (tptp.p X)) (not (tptp.q Y)) (not (= X (* (- 1) Y))))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))) :rule trans :premises (t31 t32))
% 0.21/0.55  (step t34 (cl (= (forall ((X Int) (Y Int)) (not (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y))))) (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))) :rule trans :premises (t30 t33))
% 0.21/0.55  (step t35 (cl (= (not (forall ((X Int) (Y Int)) (not (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y)))))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))) :rule cong :premises (t34))
% 0.21/0.55  (step t36 (cl (= (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= X (* (- 1) Y)))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))) :rule trans :premises (t29 t35))
% 0.21/0.55  (step t37 (cl (= (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))) :rule trans :premises (t28 t36))
% 0.21/0.55  (step t38 (cl (= (=> (and (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (< X 1) (tptp.q X)))) (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0)))) (=> (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))))) :rule cong :premises (t27 t37))
% 0.21/0.55  (step t39 (cl (= (not (=> (and (forall ((X Int)) (=> (< 3 X) (tptp.p X))) (forall ((X Int)) (=> (< X 1) (tptp.q X)))) (exists ((X Int) (Y Int)) (and (tptp.p X) (tptp.q Y) (= (+ X Y) 0))))) (not (=> (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))))) :rule cong :premises (t38))
% 0.21/0.55  (step t40 (cl (not (=> (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y)))))))) :rule resolution :premises (t20 t39 a0))
% 0.21/0.55  (step t41 (cl (not (not (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))))) :rule not_implies2 :premises (t40))
% 0.21/0.55  (step t42 (cl (forall ((Y Int)) (or (not (tptp.p (* (- 1) Y))) (not (tptp.q Y))))) :rule resolution :premises (t19 t41))
% 0.21/0.55  (step t43 (cl (or (not (tptp.p 4)) (not (tptp.q (- 4))))) :rule resolution :premises (t18 t42))
% 0.21/0.55  (step t44 (cl (not (= (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4)))) (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (tptp.q (- 4))))) (not (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4))))) (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (tptp.q (- 4)))) :rule equiv_pos2)
% 0.21/0.55  (step t45 (cl (= (forall ((X Int)) (or (>= X 1) (tptp.q X))) (forall ((X Int)) (or (>= X 1) (tptp.q X))))) :rule refl)
% 0.21/0.55  (step t46 (cl (= (>= (- 4) 1) false)) :rule all_simplify)
% 0.21/0.55  (step t47 (cl (= (tptp.q (- 4)) (tptp.q (- 4)))) :rule refl)
% 0.21/0.55  (step t48 (cl (= (or (>= (- 4) 1) (tptp.q (- 4))) (or false (tptp.q (- 4))))) :rule cong :premises (t46 t47))
% 0.21/0.55  (step t49 (cl (= (or false (tptp.q (- 4))) (tptp.q (- 4)))) :rule all_simplify)
% 0.21/0.55  (step t50 (cl (= (or (>= (- 4) 1) (tptp.q (- 4))) (tptp.q (- 4)))) :rule trans :premises (t48 t49))
% 0.21/0.55  (step t51 (cl (= (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4)))) (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (tptp.q (- 4))))) :rule cong :premises (t45 t50))
% 0.21/0.55  (step t52 (cl (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4)))) (forall ((X Int)) (or (>= X 1) (tptp.q X)))) :rule implies_neg1)
% 0.21/0.55  (anchor :step t53)
% 0.21/0.55  (assume t53.a0 (forall ((X Int)) (or (>= X 1) (tptp.q X))))
% 0.21/0.55  (step t53.t1 (cl (or (not (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (or (>= (- 4) 1) (tptp.q (- 4))))) :rule forall_inst :args ((:= X (- 4))))
% 0.21/0.55  (step t53.t2 (cl (not (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (or (>= (- 4) 1) (tptp.q (- 4)))) :rule or :premises (t53.t1))
% 0.21/0.55  (step t53.t3 (cl (or (>= (- 4) 1) (tptp.q (- 4)))) :rule resolution :premises (t53.t2 t53.a0))
% 0.21/0.55  (step t53 (cl (not (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (or (>= (- 4) 1) (tptp.q (- 4)))) :rule subproof :discharge (t53.a0))
% 0.21/0.55  (step t54 (cl (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4)))) (or (>= (- 4) 1) (tptp.q (- 4)))) :rule resolution :premises (t52 t53))
% 0.21/0.55  (step t55 (cl (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4)))) (not (or (>= (- 4) 1) (tptp.q (- 4))))) :rule implies_neg2)
% 0.21/0.55  (step t56 (cl (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4)))) (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4))))) :rule resolution :premises (t54 t55))
% 0.21/0.55  (step t57 (cl (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (or (>= (- 4) 1) (tptp.q (- 4))))) :rule contraction :premises (t56))
% 0.21/0.55  (step t58 (cl (=> (forall ((X Int)) (or (>= X 1) (tptp.q X))) (tptp.q (- 4)))) :rule resolution :premises (t44 t51 t57))
% 0.21/0.55  (step t59 (cl (not (forall ((X Int)) (or (>= X 1) (tptp.q X)))) (tptp.q (- 4))) :rule implies :premises (t58))
% 0.21/0.55  (step t60 (cl (and (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (>= X 1) (tptp.q X))))) :rule not_implies1 :premises (t40))
% 0.21/0.55  (step t61 (cl (forall ((X Int)) (or (>= X 1) (tptp.q X)))) :rule and :premises (t60))
% 0.21/0.55  (step t62 (cl (tptp.q (- 4))) :rule resolution :premises (t59 t61))
% 0.21/0.55  (step t63 (cl (not (= (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4))) (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (tptp.p 4)))) (not (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4)))) (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (tptp.p 4))) :rule equiv_pos2)
% 0.21/0.55  (step t64 (cl (= (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))))) :rule refl)
% 0.21/0.55  (step t65 (cl (= (>= 4 4) true)) :rule all_simplify)
% 0.21/0.55  (step t66 (cl (= (not (>= 4 4)) (not true))) :rule cong :premises (t65))
% 0.21/0.55  (step t67 (cl (= (not true) false)) :rule all_simplify)
% 0.21/0.55  (step t68 (cl (= (not (>= 4 4)) false)) :rule trans :premises (t66 t67))
% 0.21/0.55  (step t69 (cl (= (tptp.p 4) (tptp.p 4))) :rule refl)
% 0.21/0.55  (step t70 (cl (= (or (not (>= 4 4)) (tptp.p 4)) (or false (tptp.p 4)))) :rule cong :premises (t68 t69))
% 0.21/0.55  (step t71 (cl (= (or false (tptp.p 4)) (tptp.p 4))) :rule all_simplify)
% 0.21/0.55  (step t72 (cl (= (or (not (>= 4 4)) (tptp.p 4)) (tptp.p 4))) :rule trans :premises (t70 t71))
% 0.21/0.55  (step t73 (cl (= (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4))) (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (tptp.p 4)))) :rule cong :premises (t64 t72))
% 0.21/0.55  (step t74 (cl (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4))) (forall ((X Int)) (or (not (>= X 4)) (tptp.p X)))) :rule implies_neg1)
% 0.21/0.55  (anchor :step t75)
% 0.21/0.55  (assume t75.a0 (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))))
% 0.21/0.55  (step t75.t1 (cl (or (not (forall ((X Int)) (or (not (>= X 4)) (tptp.p X)))) (or (not (>= 4 4)) (tptp.p 4)))) :rule forall_inst :args ((:= X 4)))
% 0.21/0.55  (step t75.t2 (cl (not (forall ((X Int)) (or (not (>= X 4)) (tptp.p X)))) (or (not (>= 4 4)) (tptp.p 4))) :rule or :premises (t75.t1))
% 0.21/0.55  (step t75.t3 (cl (or (not (>= 4 4)) (tptp.p 4))) :rule resolution :premises (t75.t2 t75.a0))
% 0.21/0.55  (step t75 (cl (not (forall ((X Int)) (or (not (>= X 4)) (tptp.p X)))) (or (not (>= 4 4)) (tptp.p 4))) :rule subproof :discharge (t75.a0))
% 0.21/0.55  (step t76 (cl (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4))) (or (not (>= 4 4)) (tptp.p 4))) :rule resolution :premises (t74 t75))
% 0.21/0.55  (step t77 (cl (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4))) (not (or (not (>= 4 4)) (tptp.p 4)))) :rule implies_neg2)
% 0.21/0.55  (step t78 (cl (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4))) (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4)))) :rule resolution :premises (t76 t77))
% 0.21/0.55  (step t79 (cl (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (or (not (>= 4 4)) (tptp.p 4)))) :rule contraction :premises (t78))
% 0.21/0.55  (step t80 (cl (=> (forall ((X Int)) (or (not (>= X 4)) (tptp.p X))) (tptp.p 4))) :rule resolution :premises (t63 t73 t79))
% 0.21/0.55  (step t81 (cl (not (forall ((X Int)) (or (not (>= X 4)) (tptp.p X)))) (tptp.p 4)) :rule implies :premises (t80))
% 0.21/0.55  (step t82 (cl (forall ((X Int)) (or (not (>= X 4)) (tptp.p X)))) :rule and :premises (t60))
% 0.21/0.55  (step t83 (cl (tptp.p 4)) :rule resolution :premises (t81 t82))
% 0.21/0.55  (step t84 (cl) :rule resolution :premises (t2 t43 t62 t83))
% 0.21/0.55  
% 0.21/0.55  % SZS output end Proof for /export/starexec/sandbox/tmp/tmp.albBHafXJp/cvc5---1.0.5_21919.smt2
% 0.21/0.55  % cvc5---1.0.5 exiting
% 0.21/0.55  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------