TSTP Solution File: ALG295^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : ALG295^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n094.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:18:23 EDT 2014

% Result   : Timeout 300.10s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : ALG295^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n094.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:10:31 CDT 2014
% % CPUTime  : 300.10 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1024638>, <kernel.Type object at 0x1081248>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (<kernel.Constant object at 0x1024050>, <kernel.Constant object at 0x1024a70>) of role type named cZ
% Using role type
% Declaring cZ:a
% FOF formula (<kernel.Constant object at 0xb11638>, <kernel.DependentProduct object at 0x1081fc8>) of role type named cP
% Using role type
% Declaring cP:(a->(a->a))
% FOF formula (<kernel.Constant object at 0x1024638>, <kernel.DependentProduct object at 0x1081488>) of role type named cR
% Using role type
% Declaring cR:(a->a)
% FOF formula (<kernel.Constant object at 0x1024050>, <kernel.DependentProduct object at 0x1081050>) of role type named cL
% Using role type
% Declaring cL:(a->a)
% FOF formula (((and ((and ((and ((and (((eq a) (cL cZ)) cZ)) (((eq a) (cR cZ)) cZ))) (forall (Xx:a) (Xy:a), (((eq a) (cL ((cP Xx) Xy))) Xx)))) (forall (Xx:a) (Xy:a), (((eq a) (cR ((cP Xx) Xy))) Xy)))) (forall (Xt:a), ((iff (not (((eq a) Xt) cZ))) (((eq a) Xt) ((cP (cL Xt)) (cR Xt))))))->((iff (forall (X:(a->Prop)), (((ex a) (fun (Xt:a)=> ((and (X Xt)) (forall (Xu:a), ((X Xu)->(X (cL Xu)))))))->(X cZ)))) (forall (Xt:a), ((ex a) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ))))))))) of role conjecture named cPU_LEM8_pme
% Conjecture to prove = (((and ((and ((and ((and (((eq a) (cL cZ)) cZ)) (((eq a) (cR cZ)) cZ))) (forall (Xx:a) (Xy:a), (((eq a) (cL ((cP Xx) Xy))) Xx)))) (forall (Xx:a) (Xy:a), (((eq a) (cR ((cP Xx) Xy))) Xy)))) (forall (Xt:a), ((iff (not (((eq a) Xt) cZ))) (((eq a) Xt) ((cP (cL Xt)) (cR Xt))))))->((iff (forall (X:(a->Prop)), (((ex a) (fun (Xt:a)=> ((and (X Xt)) (forall (Xu:a), ((X Xu)->(X (cL Xu)))))))->(X cZ)))) (forall (Xt:a), ((ex a) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ))))))))):Prop
% We need to prove ['(((and ((and ((and ((and (((eq a) (cL cZ)) cZ)) (((eq a) (cR cZ)) cZ))) (forall (Xx:a) (Xy:a), (((eq a) (cL ((cP Xx) Xy))) Xx)))) (forall (Xx:a) (Xy:a), (((eq a) (cR ((cP Xx) Xy))) Xy)))) (forall (Xt:a), ((iff (not (((eq a) Xt) cZ))) (((eq a) Xt) ((cP (cL Xt)) (cR Xt))))))->((iff (forall (X:(a->Prop)), (((ex a) (fun (Xt:a)=> ((and (X Xt)) (forall (Xu:a), ((X Xu)->(X (cL Xu)))))))->(X cZ)))) (forall (Xt:a), ((ex a) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))))))']
% Parameter a:Type.
% Parameter cZ:a.
% Parameter cP:(a->(a->a)).
% Parameter cR:(a->a).
% Parameter cL:(a->a).
% Trying to prove (((and ((and ((and ((and (((eq a) (cL cZ)) cZ)) (((eq a) (cR cZ)) cZ))) (forall (Xx:a) (Xy:a), (((eq a) (cL ((cP Xx) Xy))) Xx)))) (forall (Xx:a) (Xy:a), (((eq a) (cR ((cP Xx) Xy))) Xy)))) (forall (Xt:a), ((iff (not (((eq a) Xt) cZ))) (((eq a) Xt) ((cP (cL Xt)) (cR Xt))))))->((iff (forall (X:(a->Prop)), (((ex a) (fun (Xt:a)=> ((and (X Xt)) (forall (Xu:a), ((X Xu)->(X (cL Xu)))))))->(X cZ)))) (forall (Xt:a), ((ex a) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))))))
% Found x4:(((eq a) Xt) cZ)
% Found x4 as proof of (((eq a) Xt) cZ)
% Found x4:(((eq a) Xt) cZ)
% Found x4 as proof of (((eq a) Xt) cZ)
% Found x4:(((eq a) Xt) cZ)
% Found x4 as proof of (((eq a) Xt) cZ)
% Found x4:(((eq a) Xt) cZ)
% Found x4 as proof of (((eq a) Xt) cZ)
% Found x5:(((eq a) Xt) cZ)
% Found x5 as proof of (((eq a) Xt) cZ)
% Found x6:(((eq a) Xt) cZ)
% Found x6 as proof of (((eq a) Xt) cZ)
% Found x4:(((eq a) Xt) cZ)
% Found x4 as proof of (((eq a) Xt) cZ)
% Found x6:(((eq a) Xt) cZ)
% Found x6 as proof of (((eq a) Xt) cZ)
% Found eta_expansion_dep000:=(eta_expansion_dep00 (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))):(((eq (a->Prop)) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))) (fun (x:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X x)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP x) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ))))))
% Found (eta_expansion_dep00 (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))) as proof of (((eq (a->Prop)) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))) b)
% Found ((eta_expansion_dep0 (fun (x2:a)=> Prop)) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> ((and (((eq a) ((cP Xn) Xu)) ((cP Xb) Xu_11))) (forall (X:(a->Prop)), (((and (X ((cP cZ) Xt))) (forall (Xc:a) (Xv:a), ((X ((cP Xc) Xv))->((and (X ((cP ((cP Xc) cZ)) (cL Xv)))) (X ((cP ((cP Xc) ((cP cZ) cZ))) (cR Xv)))))))->(X ((cP Xb) Xu_11)))))))))->(((eq a) Xu) cZ)))))) as proof of (((eq (a->Prop)) (fun (Xn:a)=> ((and (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx:a), ((X Xx)->(X ((cP Xx) cZ)))))->(X Xn)))) (forall (Xu:a), (((ex a) (fun (Xb:a)=> ((ex a) (fun (Xu_11:a)=> 
% EOF
%------------------------------------------------------------------------------