TSTP Solution File: ALG202+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : ALG202+1 : TPTP v8.1.2. Released v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 16:42:28 EDT 2023

% Result   : Theorem 0.19s 0.39s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : ALG202+1 : TPTP v8.1.2. Released v2.7.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n015.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 04:14:39 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.39  Command-line arguments: --no-flatten-goal
% 0.19/0.39  
% 0.19/0.39  % SZS status Theorem
% 0.19/0.39  
% 0.19/0.40  % SZS output start Proof
% 0.19/0.40  Take the following subset of the input axioms:
% 0.19/0.40    fof(ax2, axiom, ![U]: (sorti2(U) => ![V]: (sorti2(V) => sorti2(op2(U, V))))).
% 0.19/0.40    fof(ax3, axiom, ![U2]: (sorti1(U2) => op1(U2, U2)=U2)).
% 0.19/0.40    fof(ax4, axiom, ~![U2]: (sorti2(U2) => op2(U2, U2)=U2)).
% 0.19/0.40    fof(co1, conjecture, (![U2]: (sorti1(U2) => sorti2(h(U2))) & ![V2]: (sorti2(V2) => sorti1(j(V2)))) => ~(![W]: (sorti1(W) => ![X]: (sorti1(X) => h(op1(W, X))=op2(h(W), h(X)))) & (![Y]: (sorti2(Y) => ![Z]: (sorti2(Z) => j(op2(Y, Z))=op1(j(Y), j(Z)))) & (![X1]: (sorti2(X1) => h(j(X1))=X1) & ![X2]: (sorti1(X2) => j(h(X2))=X2))))).
% 0.19/0.40  
% 0.19/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.40    fresh(y, y, x1...xn) = u
% 0.19/0.40    C => fresh(s, t, x1...xn) = v
% 0.19/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.40  variables of u and v.
% 0.19/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.40  input problem has no model of domain size 1).
% 0.19/0.40  
% 0.19/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.40  
% 0.19/0.40  Axiom 1 (ax4): sorti2(u) = true.
% 0.19/0.40  Axiom 2 (co1_5): fresh(X, X, Y) = Y.
% 0.19/0.40  Axiom 3 (co1_3): fresh6(X, X, Y) = true.
% 0.19/0.40  Axiom 4 (ax3): fresh3(X, X, Y) = Y.
% 0.19/0.40  Axiom 5 (co1_5): fresh(sorti2(X), true, X) = h(j(X)).
% 0.19/0.40  Axiom 6 (ax2): fresh11(X, X, Y, Z) = sorti2(op2(Y, Z)).
% 0.19/0.40  Axiom 7 (ax2): fresh10(X, X, Y, Z) = true.
% 0.19/0.40  Axiom 8 (co1_3): fresh6(sorti2(X), true, X) = sorti1(j(X)).
% 0.19/0.40  Axiom 9 (co1_4): fresh4(X, X, Y, Z) = j(op2(Y, Z)).
% 0.19/0.40  Axiom 10 (ax3): fresh3(sorti1(X), true, X) = op1(X, X).
% 0.19/0.40  Axiom 11 (co1_4): fresh5(X, X, Y, Z) = op1(j(Y), j(Z)).
% 0.19/0.40  Axiom 12 (ax2): fresh11(sorti2(X), true, Y, X) = fresh10(sorti2(Y), true, Y, X).
% 0.19/0.40  Axiom 13 (co1_4): fresh5(sorti2(X), true, Y, X) = fresh4(sorti2(Y), true, Y, X).
% 0.19/0.40  
% 0.19/0.40  Goal 1 (ax4_1): op2(u, u) = u.
% 0.19/0.40  Proof:
% 0.19/0.40    op2(u, u)
% 0.19/0.40  = { by axiom 2 (co1_5) R->L }
% 0.19/0.40    fresh(true, true, op2(u, u))
% 0.19/0.40  = { by axiom 7 (ax2) R->L }
% 0.19/0.40    fresh(fresh10(true, true, u, u), true, op2(u, u))
% 0.19/0.40  = { by axiom 1 (ax4) R->L }
% 0.19/0.40    fresh(fresh10(sorti2(u), true, u, u), true, op2(u, u))
% 0.19/0.40  = { by axiom 12 (ax2) R->L }
% 0.19/0.40    fresh(fresh11(sorti2(u), true, u, u), true, op2(u, u))
% 0.19/0.40  = { by axiom 1 (ax4) }
% 0.19/0.40    fresh(fresh11(true, true, u, u), true, op2(u, u))
% 0.19/0.40  = { by axiom 6 (ax2) }
% 0.19/0.40    fresh(sorti2(op2(u, u)), true, op2(u, u))
% 0.19/0.40  = { by axiom 5 (co1_5) }
% 0.19/0.40    h(j(op2(u, u)))
% 0.19/0.40  = { by axiom 9 (co1_4) R->L }
% 0.19/0.40    h(fresh4(true, true, u, u))
% 0.19/0.40  = { by axiom 1 (ax4) R->L }
% 0.19/0.40    h(fresh4(sorti2(u), true, u, u))
% 0.19/0.40  = { by axiom 13 (co1_4) R->L }
% 0.19/0.40    h(fresh5(sorti2(u), true, u, u))
% 0.19/0.40  = { by axiom 1 (ax4) }
% 0.19/0.40    h(fresh5(true, true, u, u))
% 0.19/0.40  = { by axiom 11 (co1_4) }
% 0.19/0.40    h(op1(j(u), j(u)))
% 0.19/0.40  = { by axiom 10 (ax3) R->L }
% 0.19/0.40    h(fresh3(sorti1(j(u)), true, j(u)))
% 0.19/0.40  = { by axiom 8 (co1_3) R->L }
% 0.19/0.40    h(fresh3(fresh6(sorti2(u), true, u), true, j(u)))
% 0.19/0.40  = { by axiom 1 (ax4) }
% 0.19/0.40    h(fresh3(fresh6(true, true, u), true, j(u)))
% 0.19/0.40  = { by axiom 3 (co1_3) }
% 0.19/0.40    h(fresh3(true, true, j(u)))
% 0.19/0.40  = { by axiom 4 (ax3) }
% 0.19/0.40    h(j(u))
% 0.19/0.40  = { by axiom 5 (co1_5) R->L }
% 0.19/0.40    fresh(sorti2(u), true, u)
% 0.19/0.40  = { by axiom 1 (ax4) }
% 0.19/0.40    fresh(true, true, u)
% 0.19/0.40  = { by axiom 2 (co1_5) }
% 0.19/0.40    u
% 0.19/0.40  % SZS output end Proof
% 0.19/0.40  
% 0.19/0.40  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------