TSTP Solution File: ALG201+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : ALG201+1 : TPTP v8.1.2. Released v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 16:42:28 EDT 2023

% Result   : Theorem 0.21s 0.42s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.14  % Problem  : ALG201+1 : TPTP v8.1.2. Released v2.7.0.
% 0.00/0.15  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.15/0.37  % Computer : n019.cluster.edu
% 0.15/0.37  % Model    : x86_64 x86_64
% 0.15/0.37  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.37  % Memory   : 8042.1875MB
% 0.15/0.37  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.37  % CPULimit : 300
% 0.15/0.37  % WCLimit  : 300
% 0.15/0.37  % DateTime : Mon Aug 28 04:02:13 EDT 2023
% 0.15/0.37  % CPUTime  : 
% 0.21/0.42  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.42  
% 0.21/0.42  % SZS status Theorem
% 0.21/0.42  
% 0.21/0.43  % SZS output start Proof
% 0.21/0.43  Take the following subset of the input axioms:
% 0.21/0.43    fof(ax3, axiom, ![U]: (sorti1(U) => op1(U, U)!=U)).
% 0.21/0.43    fof(ax4, axiom, ~![U2]: (sorti2(U2) => op2(U2, U2)!=U2)).
% 0.21/0.43    fof(co1, conjecture, (![U2]: (sorti1(U2) => sorti2(h(U2))) & ![V]: (sorti2(V) => sorti1(j(V)))) => ~(![W]: (sorti1(W) => ![X]: (sorti1(X) => h(op1(W, X))=op2(h(W), h(X)))) & (![Y]: (sorti2(Y) => ![Z]: (sorti2(Z) => j(op2(Y, Z))=op1(j(Y), j(Z)))) & (![X1]: (sorti2(X1) => h(j(X1))=X1) & ![X2]: (sorti1(X2) => j(h(X2))=X2))))).
% 0.21/0.43  
% 0.21/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.43    fresh(y, y, x1...xn) = u
% 0.21/0.43    C => fresh(s, t, x1...xn) = v
% 0.21/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.43  variables of u and v.
% 0.21/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.43  input problem has no model of domain size 1).
% 0.21/0.43  
% 0.21/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.43  
% 0.21/0.43  Axiom 1 (ax4_1): sorti2(u) = true2.
% 0.21/0.43  Axiom 2 (ax4): op2(u, u) = u.
% 0.21/0.43  Axiom 3 (co1_3): fresh5(X, X, Y) = true2.
% 0.21/0.43  Axiom 4 (co1_3): fresh5(sorti2(X), true2, X) = sorti1(j(X)).
% 0.21/0.43  Axiom 5 (co1_4): fresh4(X, X, Y, Z) = op1(j(Y), j(Z)).
% 0.21/0.43  Axiom 6 (co1_4): fresh3(X, X, Y, Z) = j(op2(Y, Z)).
% 0.21/0.43  Axiom 7 (co1_4): fresh4(sorti2(X), true2, Y, X) = fresh3(sorti2(Y), true2, Y, X).
% 0.21/0.43  
% 0.21/0.43  Goal 1 (ax3): tuple(op1(X, X), sorti1(X)) = tuple(X, true2).
% 0.21/0.43  The goal is true when:
% 0.21/0.43    X = j(u)
% 0.21/0.43  
% 0.21/0.43  Proof:
% 0.21/0.43    tuple(op1(j(u), j(u)), sorti1(j(u)))
% 0.21/0.43  = { by axiom 5 (co1_4) R->L }
% 0.21/0.43    tuple(fresh4(true2, true2, u, u), sorti1(j(u)))
% 0.21/0.43  = { by axiom 1 (ax4_1) R->L }
% 0.21/0.43    tuple(fresh4(sorti2(u), true2, u, u), sorti1(j(u)))
% 0.21/0.43  = { by axiom 7 (co1_4) }
% 0.21/0.43    tuple(fresh3(sorti2(u), true2, u, u), sorti1(j(u)))
% 0.21/0.43  = { by axiom 1 (ax4_1) }
% 0.21/0.43    tuple(fresh3(true2, true2, u, u), sorti1(j(u)))
% 0.21/0.43  = { by axiom 6 (co1_4) }
% 0.21/0.43    tuple(j(op2(u, u)), sorti1(j(u)))
% 0.21/0.43  = { by axiom 2 (ax4) }
% 0.21/0.43    tuple(j(u), sorti1(j(u)))
% 0.21/0.43  = { by axiom 4 (co1_3) R->L }
% 0.21/0.43    tuple(j(u), fresh5(sorti2(u), true2, u))
% 0.21/0.43  = { by axiom 1 (ax4_1) }
% 0.21/0.43    tuple(j(u), fresh5(true2, true2, u))
% 0.21/0.43  = { by axiom 3 (co1_3) }
% 0.21/0.43    tuple(j(u), true2)
% 0.21/0.43  % SZS output end Proof
% 0.21/0.43  
% 0.21/0.43  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------