TSTP Solution File: ALG030-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : ALG030-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:45:56 EDT 2022

% Result   : Unsatisfiable 1.81s 1.98s
% Output   : Refutation 1.81s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    6
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   27 (  27 unt;   0 nHn;  15 RR)
%            Number of literals    :   27 (  26 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   3 con; 0-4 aty)
%            Number of variables   :   19 (   2 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    op1(sK2_ax3_U,sK1_ax3_V) != op1(sK1_ax3_V,sK2_ax3_U),
    file('ALG030-10.p',unknown),
    [] ).

cnf(4,axiom,
    ife_q2(A,A,B,C) = B,
    file('ALG030-10.p',unknown),
    [] ).

cnf(6,axiom,
    ife_q(A,A,B,C) = B,
    file('ALG030-10.p',unknown),
    [] ).

cnf(7,axiom,
    ife_q(sorti1(A),true,ife_q(sorti1(B),true,sorti1(op1(B,A)),true),true) = true,
    file('ALG030-10.p',unknown),
    [] ).

cnf(11,axiom,
    sorti1(sK1_ax3_V) = true,
    file('ALG030-10.p',unknown),
    [] ).

cnf(13,axiom,
    sorti1(sK2_ax3_U) = true,
    file('ALG030-10.p',unknown),
    [] ).

cnf(15,axiom,
    ife_q2(sorti2(A),true,ife_q2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B)) = op2(A,B),
    file('ALG030-10.p',unknown),
    [] ).

cnf(17,axiom,
    ife_q(sorti1(A),true,sorti2(h(A)),true) = true,
    file('ALG030-10.p',unknown),
    [] ).

cnf(19,axiom,
    ife_q2(sorti1(A),true,ife_q2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A))) = h(op1(B,A)),
    file('ALG030-10.p',unknown),
    [] ).

cnf(21,axiom,
    ife_q2(sorti1(A),true,j(h(A)),A) = A,
    file('ALG030-10.p',unknown),
    [] ).

cnf(29,plain,
    ife_q(sorti1(A),true,sorti1(op1(A,sK2_ax3_U)),true) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,13]),6]),
    [iquote('para_into,7.1.1.1,13.1.1,demod,6')] ).

cnf(31,plain,
    ife_q(sorti1(A),true,sorti1(op1(A,sK1_ax3_V)),true) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,11]),6]),
    [iquote('para_into,7.1.1.1,11.1.1,demod,6')] ).

cnf(37,plain,
    sorti2(h(sK2_ax3_U)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,13]),6]),
    [iquote('para_into,17.1.1.1,13.1.1,demod,6')] ).

cnf(39,plain,
    sorti2(h(sK1_ax3_V)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,11]),6]),
    [iquote('para_into,17.1.1.1,11.1.1,demod,6')] ).

cnf(53,plain,
    ife_q2(sorti2(A),true,op2(A,h(sK1_ax3_V)),op2(h(sK1_ax3_V),A)) = op2(h(sK1_ax3_V),A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,39]),4]),
    [iquote('para_into,15.1.1.1,39.1.1,demod,4')] ).

cnf(63,plain,
    sorti1(op1(sK1_ax3_V,sK2_ax3_U)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[29,11]),6]),
    [iquote('para_into,29.1.1.1,11.1.1,demod,6')] ).

cnf(79,plain,
    j(h(op1(sK1_ax3_V,sK2_ax3_U))) = op1(sK1_ax3_V,sK2_ax3_U),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[63,21]),4]),
    [iquote('para_from,63.1.1,21.1.1.1,demod,4')] ).

cnf(97,plain,
    ife_q2(sorti1(A),true,op2(h(A),h(sK2_ax3_U)),h(op1(A,sK2_ax3_U))) = h(op1(A,sK2_ax3_U)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,13]),4]),
    [iquote('para_into,19.1.1.1,13.1.1,demod,4')] ).

cnf(99,plain,
    ife_q2(sorti1(A),true,op2(h(A),h(sK1_ax3_V)),h(op1(A,sK1_ax3_V))) = h(op1(A,sK1_ax3_V)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,11]),4]),
    [iquote('para_into,19.1.1.1,11.1.1,demod,4')] ).

cnf(209,plain,
    sorti1(op1(sK2_ax3_U,sK1_ax3_V)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[31,13]),6]),
    [iquote('para_into,31.1.1.1,13.1.1,demod,6')] ).

cnf(221,plain,
    j(h(op1(sK2_ax3_U,sK1_ax3_V))) = op1(sK2_ax3_U,sK1_ax3_V),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[209,21]),4]),
    [iquote('para_from,209.1.1,21.1.1.1,demod,4')] ).

cnf(838,plain,
    op2(h(sK2_ax3_U),h(sK1_ax3_V)) = op2(h(sK1_ax3_V),h(sK2_ax3_U)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[53,37]),4]),
    [iquote('para_into,53.1.1.1,37.1.1,demod,4')] ).

cnf(926,plain,
    h(op1(sK1_ax3_V,sK2_ax3_U)) = op2(h(sK1_ax3_V),h(sK2_ax3_U)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[97,11]),4])]),
    [iquote('para_into,97.1.1.1,11.1.1,demod,4,flip.1')] ).

cnf(930,plain,
    j(op2(h(sK1_ax3_V),h(sK2_ax3_U))) = op1(sK1_ax3_V,sK2_ax3_U),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[79]),926]),
    [iquote('back_demod,79,demod,926')] ).

cnf(932,plain,
    h(op1(sK2_ax3_U,sK1_ax3_V)) = op2(h(sK1_ax3_V),h(sK2_ax3_U)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[99,13]),838,4])]),
    [iquote('para_into,99.1.1.1,13.1.1,demod,838,4,flip.1')] ).

cnf(935,plain,
    op1(sK2_ax3_U,sK1_ax3_V) = op1(sK1_ax3_V,sK2_ax3_U),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[221]),932,930])]),
    [iquote('back_demod,221,demod,932,930,flip.1')] ).

cnf(937,plain,
    $false,
    inference(binary,[status(thm)],[935,1]),
    [iquote('binary,935.1,1.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : ALG030-10 : TPTP v8.1.0. Released v7.3.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n008.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 03:56:53 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.75/1.95  ----- Otter 3.3f, August 2004 -----
% 1.75/1.95  The process was started by sandbox2 on n008.cluster.edu,
% 1.75/1.95  Wed Jul 27 03:56:53 2022
% 1.75/1.95  The command was "./otter".  The process ID is 9407.
% 1.75/1.95  
% 1.75/1.95  set(prolog_style_variables).
% 1.75/1.95  set(auto).
% 1.75/1.95     dependent: set(auto1).
% 1.75/1.95     dependent: set(process_input).
% 1.75/1.95     dependent: clear(print_kept).
% 1.75/1.95     dependent: clear(print_new_demod).
% 1.75/1.95     dependent: clear(print_back_demod).
% 1.75/1.95     dependent: clear(print_back_sub).
% 1.75/1.95     dependent: set(control_memory).
% 1.75/1.95     dependent: assign(max_mem, 12000).
% 1.75/1.95     dependent: assign(pick_given_ratio, 4).
% 1.75/1.95     dependent: assign(stats_level, 1).
% 1.75/1.95     dependent: assign(max_seconds, 10800).
% 1.75/1.95  clear(print_given).
% 1.75/1.95  
% 1.75/1.95  list(usable).
% 1.75/1.95  0 [] A=A.
% 1.75/1.95  0 [] ife_q2(A,A,B,C)=B.
% 1.75/1.95  0 [] ife_q(A,A,B,C)=B.
% 1.75/1.95  0 [] ife_q(sorti1(V),true,ife_q(sorti1(U),true,sorti1(op1(U,V)),true),true)=true.
% 1.75/1.95  0 [] ife_q(sorti2(V),true,ife_q(sorti2(U),true,sorti2(op2(U,V)),true),true)=true.
% 1.75/1.95  0 [] op1(sK2_ax3_U,sK1_ax3_V)!=op1(sK1_ax3_V,sK2_ax3_U).
% 1.75/1.95  0 [] sorti1(sK1_ax3_V)=true.
% 1.75/1.95  0 [] sorti1(sK2_ax3_U)=true.
% 1.75/1.95  0 [] ife_q2(sorti2(V),true,ife_q2(sorti2(U),true,op2(U,V),op2(V,U)),op2(V,U))=op2(V,U).
% 1.75/1.95  0 [] ife_q(sorti1(U),true,sorti2(h(U)),true)=true.
% 1.75/1.95  0 [] ife_q2(sorti1(X),true,ife_q2(sorti1(W),true,op2(h(W),h(X)),h(op1(W,X))),h(op1(W,X)))=h(op1(W,X)).
% 1.75/1.95  0 [] ife_q2(sorti1(X2),true,j(h(X2)),X2)=X2.
% 1.75/1.95  0 [] ife_q(sorti2(V),true,sorti1(j(V)),true)=true.
% 1.75/1.95  0 [] ife_q2(sorti2(Z),true,ife_q2(sorti2(Y),true,op1(j(Y),j(Z)),j(op2(Y,Z))),j(op2(Y,Z)))=j(op2(Y,Z)).
% 1.75/1.95  0 [] ife_q2(sorti2(X1),true,h(j(X1)),X1)=X1.
% 1.75/1.95  end_of_list.
% 1.75/1.95  
% 1.75/1.95  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.75/1.95  
% 1.75/1.95  All clauses are units, and equality is present; the
% 1.75/1.95  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.75/1.95  
% 1.75/1.95     dependent: set(knuth_bendix).
% 1.75/1.95     dependent: set(anl_eq).
% 1.75/1.95     dependent: set(para_from).
% 1.75/1.95     dependent: set(para_into).
% 1.75/1.95     dependent: clear(para_from_right).
% 1.75/1.95     dependent: clear(para_into_right).
% 1.75/1.95     dependent: set(para_from_vars).
% 1.75/1.95     dependent: set(eq_units_both_ways).
% 1.75/1.95     dependent: set(dynamic_demod_all).
% 1.75/1.95     dependent: set(dynamic_demod).
% 1.75/1.95     dependent: set(order_eq).
% 1.75/1.95     dependent: set(back_demod).
% 1.75/1.95     dependent: set(lrpo).
% 1.75/1.95  
% 1.75/1.95  ------------> process usable:
% 1.75/1.95  ** KEPT (pick-wt=7): 1 [] op1(sK2_ax3_U,sK1_ax3_V)!=op1(sK1_ax3_V,sK2_ax3_U).
% 1.75/1.95  
% 1.75/1.95  ------------> process sos:
% 1.75/1.95  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.75/1.95  ** KEPT (pick-wt=7): 3 [] ife_q2(A,A,B,C)=B.
% 1.75/1.95  ---> New Demodulator: 4 [new_demod,3] ife_q2(A,A,B,C)=B.
% 1.75/1.95  ** KEPT (pick-wt=7): 5 [] ife_q(A,A,B,C)=B.
% 1.75/1.95  ---> New Demodulator: 6 [new_demod,5] ife_q(A,A,B,C)=B.
% 1.75/1.95  ** KEPT (pick-wt=16): 7 [] ife_q(sorti1(A),true,ife_q(sorti1(B),true,sorti1(op1(B,A)),true),true)=true.
% 1.75/1.95  ---> New Demodulator: 8 [new_demod,7] ife_q(sorti1(A),true,ife_q(sorti1(B),true,sorti1(op1(B,A)),true),true)=true.
% 1.75/1.95  ** KEPT (pick-wt=16): 9 [] ife_q(sorti2(A),true,ife_q(sorti2(B),true,sorti2(op2(B,A)),true),true)=true.
% 1.75/1.95  ---> New Demodulator: 10 [new_demod,9] ife_q(sorti2(A),true,ife_q(sorti2(B),true,sorti2(op2(B,A)),true),true)=true.
% 1.75/1.95  ** KEPT (pick-wt=4): 11 [] sorti1(sK1_ax3_V)=true.
% 1.75/1.95  ---> New Demodulator: 12 [new_demod,11] sorti1(sK1_ax3_V)=true.
% 1.75/1.95  ** KEPT (pick-wt=4): 13 [] sorti1(sK2_ax3_U)=true.
% 1.75/1.95  ---> New Demodulator: 14 [new_demod,13] sorti1(sK2_ax3_U)=true.
% 1.75/1.95  ** KEPT (pick-wt=21): 15 [] ife_q2(sorti2(A),true,ife_q2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B))=op2(A,B).
% 1.75/1.95  ---> New Demodulator: 16 [new_demod,15] ife_q2(sorti2(A),true,ife_q2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B))=op2(A,B).
% 1.75/1.95  ** KEPT (pick-wt=10): 17 [] ife_q(sorti1(A),true,sorti2(h(A)),true)=true.
% 1.75/1.95  ---> New Demodulator: 18 [new_demod,17] ife_q(sorti1(A),true,sorti2(h(A)),true)=true.
% 1.75/1.95  ** KEPT (pick-wt=26): 19 [] ife_q2(sorti1(A),true,ife_q2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A)))=h(op1(B,A)).
% 1.75/1.95  ---> New Demodulator: 20 [new_demod,19] ife_q2(sorti1(A),true,ife_q2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A)))=h(op1(B,A)).
% 1.75/1.95  ** KEPT (pick-wt=10): 21 [] ife_q2(sorti1(A),true,j(h(A)),A)=A.
% 1.75/1.95  ---> New Demodulator: 22 [new_demod,21] ife_q2(sorti1(A),true,j(h(A)),A)=A.
% 1.75/1.95  ** KEPT (pick-wt=10): 23 [] ife_q(sorti2(A),true,sorti1(j(A)),true)=true.
% 1.75/1.95  ---> New Demodulator: 24 [new_demod,23] ife_q(sorti2(A),true,sorti1(j(A)),true)=true.
% 1.75/1.95  ** KEPT (pick-wt=26): 25 [] ife_q2(sorti2(A),true,ife_q2(sorti2(B),true,op1(j(B),j(A)),j(op2(B,A))),j(op2(B,A)))=j(op2(B,A)).
% 1.81/1.98  ---> New Demodulator: 26 [new_demod,25] ife_q2(sorti2(A),true,ife_q2(sorti2(B),true,op1(j(B),j(A)),j(op2(B,A))),j(op2(B,A)))=j(op2(B,A)).
% 1.81/1.98  ** KEPT (pick-wt=10): 27 [] ife_q2(sorti2(A),true,h(j(A)),A)=A.
% 1.81/1.98  ---> New Demodulator: 28 [new_demod,27] ife_q2(sorti2(A),true,h(j(A)),A)=A.
% 1.81/1.98    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.81/1.98  >>>> Starting back demodulation with 4.
% 1.81/1.98  >>>> Starting back demodulation with 6.
% 1.81/1.98  >>>> Starting back demodulation with 8.
% 1.81/1.98  >>>> Starting back demodulation with 10.
% 1.81/1.98  >>>> Starting back demodulation with 12.
% 1.81/1.98  >>>> Starting back demodulation with 14.
% 1.81/1.98  >>>> Starting back demodulation with 16.
% 1.81/1.98  >>>> Starting back demodulation with 18.
% 1.81/1.98  >>>> Starting back demodulation with 20.
% 1.81/1.98  >>>> Starting back demodulation with 22.
% 1.81/1.98  >>>> Starting back demodulation with 24.
% 1.81/1.98  >>>> Starting back demodulation with 26.
% 1.81/1.98  >>>> Starting back demodulation with 28.
% 1.81/1.98  
% 1.81/1.98  ======= end of input processing =======
% 1.81/1.98  
% 1.81/1.98  =========== start of search ===========
% 1.81/1.98  
% 1.81/1.98  
% 1.81/1.98  Resetting weight limit to 10.
% 1.81/1.98  
% 1.81/1.98  
% 1.81/1.98  Resetting weight limit to 10.
% 1.81/1.98  
% 1.81/1.98  sos_size=353
% 1.81/1.98  
% 1.81/1.98  -------- PROOF -------- 
% 1.81/1.98  
% 1.81/1.98  ----> UNIT CONFLICT at   0.04 sec ----> 937 [binary,935.1,1.1] $F.
% 1.81/1.98  
% 1.81/1.98  Length of proof is 16.  Level of proof is 5.
% 1.81/1.98  
% 1.81/1.98  ---------------- PROOF ----------------
% 1.81/1.98  % SZS status Unsatisfiable
% 1.81/1.98  % SZS output start Refutation
% See solution above
% 1.81/1.98  ------------ end of proof -------------
% 1.81/1.98  
% 1.81/1.98  
% 1.81/1.98  Search stopped by max_proofs option.
% 1.81/1.98  
% 1.81/1.98  
% 1.81/1.98  Search stopped by max_proofs option.
% 1.81/1.98  
% 1.81/1.98  ============ end of search ============
% 1.81/1.98  
% 1.81/1.98  -------------- statistics -------------
% 1.81/1.98  clauses given                141
% 1.81/1.98  clauses generated           2354
% 1.81/1.98  clauses kept                 469
% 1.81/1.98  clauses forward subsumed     633
% 1.81/1.98  clauses back subsumed          0
% 1.81/1.98  Kbytes malloced             4882
% 1.81/1.98  
% 1.81/1.98  ----------- times (seconds) -----------
% 1.81/1.98  user CPU time          0.04          (0 hr, 0 min, 0 sec)
% 1.81/1.98  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.81/1.98  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.81/1.98  
% 1.81/1.98  That finishes the proof of the theorem.
% 1.81/1.98  
% 1.81/1.98  Process 9407 finished Wed Jul 27 03:56:55 2022
% 1.81/1.99  Otter interrupted
% 1.81/1.99  PROOF FOUND
%------------------------------------------------------------------------------