TSTP Solution File: ALG030-10 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : ALG030-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 14 15:38:17 EDT 2022

% Result   : Unsatisfiable 0.65s 1.08s
% Output   : Refutation 0.65s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    6
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   28 (  28 unt;   0 nHn;  16 RR)
%            Number of literals    :   28 (   0 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   3 con; 0-4 aty)
%            Number of variables   :   19 (   2 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,plain,
    equal(ifeq2(A,A,B,C),B),
    file('ALG030-10.p',unknown),
    [] ).

cnf(2,plain,
    equal(ifeq(A,A,B,C),B),
    file('ALG030-10.p',unknown),
    [] ).

cnf(3,plain,
    equal(ifeq(sorti1(A),true,ifeq(sorti1(B),true,sorti1(op1(B,A)),true),true),true),
    file('ALG030-10.p',unknown),
    [] ).

cnf(5,plain,
    ~ equal(op1(sK2_ax3_U,sK1_ax3_V),op1(sK1_ax3_V,sK2_ax3_U)),
    file('ALG030-10.p',unknown),
    [] ).

cnf(6,plain,
    equal(sorti1(sK1_ax3_V),true),
    file('ALG030-10.p',unknown),
    [] ).

cnf(7,plain,
    equal(sorti1(sK2_ax3_U),true),
    file('ALG030-10.p',unknown),
    [] ).

cnf(8,plain,
    equal(ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B)),op2(A,B)),
    file('ALG030-10.p',unknown),
    [] ).

cnf(9,plain,
    equal(ifeq(sorti1(A),true,sorti2(h(A)),true),true),
    file('ALG030-10.p',unknown),
    [] ).

cnf(10,plain,
    equal(ifeq2(sorti1(A),true,ifeq2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A))),h(op1(B,A))),
    file('ALG030-10.p',unknown),
    [] ).

cnf(11,plain,
    equal(ifeq2(sorti1(A),true,j(h(A)),A),A),
    file('ALG030-10.p',unknown),
    [] ).

cnf(15,plain,
    equal(sorti2(h(sK1_ax3_V)),true),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[6,9]),2]),
    [iquote('para(6,9),demod([2])')] ).

cnf(16,plain,
    equal(sorti2(h(sK2_ax3_U)),true),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[7,9]),2]),
    [iquote('para(7,9),demod([2])')] ).

cnf(19,plain,
    equal(ifeq(sorti1(A),true,sorti1(op1(A,sK1_ax3_V)),true),true),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[6,3]),2]),
    [iquote('para(6,3),demod([2])')] ).

cnf(20,plain,
    equal(ifeq(sorti1(A),true,sorti1(op1(sK1_ax3_V,A)),true),true),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[6,3]),2]),
    [iquote('para(6,3),demod([2])')] ).

cnf(24,plain,
    equal(sorti1(op1(sK2_ax3_U,sK1_ax3_V)),true),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[7,19]),2]),
    [iquote('para(7,19),demod([2])')] ).

cnf(25,plain,
    equal(sorti1(op1(sK1_ax3_V,sK2_ax3_U)),true),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[7,20]),2]),
    [iquote('para(7,20),demod([2])')] ).

cnf(29,plain,
    equal(ifeq2(sorti1(A),true,op2(h(A),h(sK1_ax3_V)),h(op1(A,sK1_ax3_V))),h(op1(A,sK1_ax3_V))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[6,10]),1]),
    [iquote('para(6,10),demod([1])')] ).

cnf(30,plain,
    equal(ifeq2(sorti1(A),true,op2(h(sK1_ax3_V),h(A)),h(op1(sK1_ax3_V,A))),h(op1(sK1_ax3_V,A))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[6,10]),1]),
    [iquote('para(6,10),demod([1])')] ).

cnf(34,plain,
    equal(j(h(op1(sK2_ax3_U,sK1_ax3_V))),op1(sK2_ax3_U,sK1_ax3_V)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[24,11]),1]),
    [iquote('para(24,11),demod([1])')] ).

cnf(36,plain,
    equal(j(h(op1(sK1_ax3_V,sK2_ax3_U))),op1(sK1_ax3_V,sK2_ax3_U)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[25,11]),1]),
    [iquote('para(25,11),demod([1])')] ).

cnf(43,plain,
    equal(ifeq2(sorti2(A),true,op2(A,h(sK1_ax3_V)),op2(h(sK1_ax3_V),A)),op2(h(sK1_ax3_V),A)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[15,8]),1]),
    [iquote('para(15,8),demod([1])')] ).

cnf(101,plain,
    equal(h(op1(sK2_ax3_U,sK1_ax3_V)),op2(h(sK2_ax3_U),h(sK1_ax3_V))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[7,29]),1]),1]),
    [iquote('para(7,29),demod([1]),flip(1)')] ).

cnf(104,plain,
    equal(j(op2(h(sK2_ax3_U),h(sK1_ax3_V))),op1(sK2_ax3_U,sK1_ax3_V)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[34]),101]),
    [iquote('back_demod(34),demod([101])')] ).

cnf(110,plain,
    equal(h(op1(sK1_ax3_V,sK2_ax3_U)),op2(h(sK1_ax3_V),h(sK2_ax3_U))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[7,30]),1]),1]),
    [iquote('para(7,30),demod([1]),flip(1)')] ).

cnf(114,plain,
    equal(j(op2(h(sK1_ax3_V),h(sK2_ax3_U))),op1(sK1_ax3_V,sK2_ax3_U)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[36]),110]),
    [iquote('back_demod(36),demod([110])')] ).

cnf(194,plain,
    equal(op2(h(sK2_ax3_U),h(sK1_ax3_V)),op2(h(sK1_ax3_V),h(sK2_ax3_U))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[16,43]),1]),
    [iquote('para(16,43),demod([1])')] ).

cnf(199,plain,
    equal(op1(sK2_ax3_U,sK1_ax3_V),op1(sK1_ax3_V,sK2_ax3_U)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[104]),194,114]),1]),
    [iquote('back_demod(104),demod([194,114]),flip(1)')] ).

cnf(200,plain,
    $false,
    inference(conflict,[status(thm)],[199,5]),
    [iquote('conflict(199,5)')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.09/0.11  % Problem  : ALG030-10 : TPTP v8.1.0. Released v7.3.0.
% 0.09/0.12  % Command  : tptp2X_and_run_eqp %s
% 0.12/0.33  % Computer : n027.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Wed Jun  8 23:05:12 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.65/1.08  ----- EQP 0.9e, May 2009 -----
% 0.65/1.08  The job began on n027.cluster.edu, Wed Jun  8 23:05:12 2022
% 0.65/1.08  The command was "./eqp09e".
% 0.65/1.08  
% 0.65/1.08  set(prolog_style_variables).
% 0.65/1.08  set(lrpo).
% 0.65/1.08  set(basic_paramod).
% 0.65/1.08  set(functional_subsume).
% 0.65/1.08  set(ordered_paramod).
% 0.65/1.08  set(prime_paramod).
% 0.65/1.08  set(para_pairs).
% 0.65/1.08  assign(pick_given_ratio,4).
% 0.65/1.08  clear(print_kept).
% 0.65/1.08  clear(print_new_demod).
% 0.65/1.08  clear(print_back_demod).
% 0.65/1.08  clear(print_given).
% 0.65/1.08  assign(max_mem,64000).
% 0.65/1.08  end_of_commands.
% 0.65/1.08  
% 0.65/1.08  Usable:
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Sos:
% 0.65/1.08  0 (wt=-1) [] ifeq2(A,A,B,C) = B.
% 0.65/1.08  0 (wt=-1) [] ifeq(A,A,B,C) = B.
% 0.65/1.08  0 (wt=-1) [] ifeq(sorti1(A),true,ifeq(sorti1(B),true,sorti1(op1(B,A)),true),true) = true.
% 0.65/1.08  0 (wt=-1) [] ifeq(sorti2(A),true,ifeq(sorti2(B),true,sorti2(op2(B,A)),true),true) = true.
% 0.65/1.08  0 (wt=-1) [] -(op1(sK2_ax3_U,sK1_ax3_V) = op1(sK1_ax3_V,sK2_ax3_U)).
% 0.65/1.08  0 (wt=-1) [] sorti1(sK1_ax3_V) = true.
% 0.65/1.08  0 (wt=-1) [] sorti1(sK2_ax3_U) = true.
% 0.65/1.08  0 (wt=-1) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B)) = op2(A,B).
% 0.65/1.08  0 (wt=-1) [] ifeq(sorti1(A),true,sorti2(h(A)),true) = true.
% 0.65/1.08  0 (wt=-1) [] ifeq2(sorti1(A),true,ifeq2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A))) = h(op1(B,A)).
% 0.65/1.08  0 (wt=-1) [] ifeq2(sorti1(A),true,j(h(A)),A) = A.
% 0.65/1.08  0 (wt=-1) [] ifeq(sorti2(A),true,sorti1(j(A)),true) = true.
% 0.65/1.08  0 (wt=-1) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op1(j(B),j(A)),j(op2(B,A))),j(op2(B,A))) = j(op2(B,A)).
% 0.65/1.08  0 (wt=-1) [] ifeq2(sorti2(A),true,h(j(A)),A) = A.
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Demodulators:
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Passive:
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Starting to process input.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.65/1.08  1 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.65/1.08  2 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 3 (wt=16) [] ifeq(sorti1(A),true,ifeq(sorti1(B),true,sorti1(op1(B,A)),true),true) = true.
% 0.65/1.08  3 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 4 (wt=16) [] ifeq(sorti2(A),true,ifeq(sorti2(B),true,sorti2(op2(B,A)),true),true) = true.
% 0.65/1.08  4 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 5 (wt=7) [] -(op1(sK2_ax3_U,sK1_ax3_V) = op1(sK1_ax3_V,sK2_ax3_U)).
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 6 (wt=4) [] sorti1(sK1_ax3_V) = true.
% 0.65/1.08  6 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 7 (wt=4) [] sorti1(sK2_ax3_U) = true.
% 0.65/1.08  7 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 8 (wt=21) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B)) = op2(A,B).
% 0.65/1.08  8 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 9 (wt=10) [] ifeq(sorti1(A),true,sorti2(h(A)),true) = true.
% 0.65/1.08  9 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 10 (wt=26) [] ifeq2(sorti1(A),true,ifeq2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A))) = h(op1(B,A)).
% 0.65/1.08  10 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 11 (wt=10) [] ifeq2(sorti1(A),true,j(h(A)),A) = A.
% 0.65/1.08  11 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 12 (wt=10) [] ifeq(sorti2(A),true,sorti1(j(A)),true) = true.
% 0.65/1.08  12 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 13 (wt=26) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op1(j(B),j(A)),j(op2(B,A))),j(op2(B,A))) = j(op2(B,A)).
% 0.65/1.08  13 is a new demodulator.
% 0.65/1.08  
% 0.65/1.08  ** KEPT: 14 (wt=10) [] ifeq2(sorti2(A),true,h(j(A)),A) = A.
% 0.65/1.08  14 is a new demodulator.
% 0.65/1.08  ---------------- PROOF FOUND ----------------
% 0.65/1.08  % SZS status Unsatisfiable
% 0.65/1.08  
% 0.65/1.08  
% 0.65/1.08  After processing input:
% 0.65/1.08  
% 0.65/1.08  Usable:
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Sos:
% 0.65/1.08  6 (wt=4) [] sorti1(sK1_ax3_V) = true.
% 0.65/1.08  7 (wt=4) [] sorti1(sK2_ax3_U) = true.
% 0.65/1.08  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.65/1.08  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.65/1.08  5 (wt=7) [] -(op1(sK2_ax3_U,sK1_ax3_V) = op1(sK1_ax3_V,sK2_ax3_U)).
% 0.65/1.08  9 (wt=10) [] ifeq(sorti1(A),true,sorti2(h(A)),true) = true.
% 0.65/1.08  11 (wt=10) [] ifeq2(sorti1(A),true,j(h(A)),A) = A.
% 0.65/1.08  12 (wt=10) [] ifeq(sorti2(A),true,sorti1(j(A)),true) = true.
% 0.65/1.08  14 (wt=10) [] ifeq2(sorti2(A),true,h(j(A)),A) = A.
% 0.65/1.08  3 (wt=16) [] ifeq(sorti1(A),true,ifeq(sorti1(B),true,sorti1(op1(B,A)),true),true) = true.
% 0.65/1.08  4 (wt=16) [] ifeq(sorti2(A),true,ifeq(sorti2(B),true,sorti2(op2(B,A)),true),true) = true.
% 0.65/1.08  8 (wt=21) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B)) = op2(A,B).
% 0.65/1.08  10 (wt=26) [] ifeq2(sorti1(A),true,ifeq2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A))) = h(op1(B,A)).
% 0.65/1.08  13 (wt=26) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op1(j(B),j(A)),j(op2(B,A))),j(op2(B,A))) = j(op2(B,A)).
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Demodulators:
% 0.65/1.08  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.65/1.08  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.65/1.08  3 (wt=16) [] ifeq(sorti1(A),true,ifeq(sorti1(B),true,sorti1(op1(B,A)),true),true) = true.
% 0.65/1.08  4 (wt=16) [] ifeq(sorti2(A),true,ifeq(sorti2(B),true,sorti2(op2(B,A)),true),true) = true.
% 0.65/1.08  6 (wt=4) [] sorti1(sK1_ax3_V) = true.
% 0.65/1.08  7 (wt=4) [] sorti1(sK2_ax3_U) = true.
% 0.65/1.08  8 (wt=21) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op2(B,A),op2(A,B)),op2(A,B)) = op2(A,B).
% 0.65/1.08  9 (wt=10) [] ifeq(sorti1(A),true,sorti2(h(A)),true) = true.
% 0.65/1.08  10 (wt=26) [] ifeq2(sorti1(A),true,ifeq2(sorti1(B),true,op2(h(B),h(A)),h(op1(B,A))),h(op1(B,A))) = h(op1(B,A)).
% 0.65/1.08  11 (wt=10) [] ifeq2(sorti1(A),true,j(h(A)),A) = A.
% 0.65/1.08  12 (wt=10) [] ifeq(sorti2(A),true,sorti1(j(A)),true) = true.
% 0.65/1.08  13 (wt=26) [] ifeq2(sorti2(A),true,ifeq2(sorti2(B),true,op1(j(B),j(A)),j(op2(B,A))),j(op2(B,A))) = j(op2(B,A)).
% 0.65/1.08  14 (wt=10) [] ifeq2(sorti2(A),true,h(j(A)),A) = A.
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  Passive:
% 0.65/1.08  end_of_list.
% 0.65/1.08  
% 0.65/1.08  UNIT CONFLICT from 199 and 5 at   0.01 seconds.
% 0.65/1.08  
% 0.65/1.08  ---------------- PROOF ----------------
% 0.65/1.08  % SZS output start Refutation
% See solution above
% 0.65/1.08  ------------ end of proof -------------
% 0.65/1.08  
% 0.65/1.08  
% 0.65/1.08  ------------- memory usage ------------
% 0.65/1.08  Memory dynamically allocated (tp_alloc): 488.
% 0.65/1.08    type (bytes each)        gets      frees     in use      avail      bytes
% 0.65/1.08  sym_ent (  96)               70          0         70          0      6.6 K
% 0.65/1.08  term (  16)               11068       8250       2818         27     54.8 K
% 0.65/1.08  gen_ptr (   8)            14390       2408      11982         27     93.8 K
% 0.65/1.08  context ( 808)            47956      47954          2          2      3.2 K
% 0.65/1.08  trail (  12)                 84         84          0          3      0.0 K
% 0.65/1.08  bt_node (  68)            22809      22807          2         19      1.4 K
% 0.65/1.08  ac_position (285432)          0          0          0          0      0.0 K
% 0.65/1.08  ac_match_pos (14044)          0          0          0          0      0.0 K
% 0.65/1.08  ac_match_free_vars_pos (4020)
% 0.65/1.08                                0          0          0          0      0.0 K
% 0.65/1.08  discrim (  12)             2484        542       1942         69     23.6 K
% 0.65/1.08  flat (  40)               13081      13081          0         17      0.7 K
% 0.65/1.08  discrim_pos (  12)          533        533          0          1      0.0 K
% 0.65/1.08  fpa_head (  12)            1095          0       1095          0     12.8 K
% 0.65/1.08  fpa_tree (  28)            1351       1351          0         17      0.5 K
% 0.65/1.08  fpa_pos (  36)              396        396          0          1      0.0 K
% 0.65/1.08  literal (  12)              577        378        199          1      2.3 K
% 0.65/1.08  clause (  24)               577        378        199          1      4.7 K
% 0.65/1.08  list (  12)                 256        199         57          2      0.7 K
% 0.65/1.08  list_pos (  20)             905        248        657         50     13.8 K
% 0.65/1.08  pair_index (   40)              2          0          2          0      0.1 K
% 0.65/1.08  
% 0.65/1.08  -------------- statistics -------------
% 0.65/1.08  Clauses input                 14
% 0.65/1.08    Usable input                   0
% 0.65/1.08    Sos input                     14
% 0.65/1.08    Demodulators input             0
% 0.65/1.08    Passive input                  0
% 0.65/1.08  
% 0.65/1.08  Processed BS (before search)  14
% 0.65/1.08  Forward subsumed BS            0
% 0.65/1.08  Kept BS                       14
% 0.65/1.08  New demodulators BS           13
% 0.65/1.08  Back demodulated BS            0
% 0.65/1.08  
% 0.65/1.08  Clauses or pairs given      2075
% 0.65/1.08  Clauses generated            361
% 0.65/1.08  Forward subsumed             176
% 0.65/1.08  Deleted by weight              0
% 0.65/1.08  Deleted by variable count      0
% 0.65/1.08  Kept                         185
% 0.65/1.08  New demodulators             184
% 0.65/1.08  Back demodulated              46
% 0.65/1.08  Ordered paramod prunes         0
% 0.65/1.08  Basic paramod prunes         334
% 0.65/1.08  Prime paramod prunes           0
% 0.65/1.08  Semantic prunes                0
% 0.65/1.08  
% 0.65/1.08  Rewrite attmepts            6105
% 0.65/1.08  Rewrites                     533
% 0.65/1.08  
% 0.65/1.08  FPA overloads                  0
% 0.65/1.08  FPA underloads                 0
% 0.65/1.08  
% 0.65/1.08  Usable size                    0
% 0.65/1.08  Sos size                     152
% 0.65/1.08  Demodulators size            151
% 0.65/1.08  Passive size                   0
% 0.65/1.08  Disabled size                 46
% 0.65/1.08  
% 0.65/1.08  Proofs found                   1
% 0.65/1.08  
% 0.65/1.08  ----------- times (seconds) ----------- Wed Jun  8 23:05:12 2022
% 0.65/1.08  
% 0.65/1.08  user CPU time             0.01   (0 hr, 0 min, 0 sec)
% 0.65/1.08  system CPU time           0.02   (0 hr, 0 min, 0 sec)
% 0.65/1.08  wall-clock time           0      (0 hr, 0 min, 0 sec)
% 0.65/1.08  input time                0.00
% 0.65/1.08  paramodulation time       0.01
% 0.65/1.08  demodulation time         0.00
% 0.65/1.08  orient time               0.00
% 0.65/1.08  weigh time                0.00
% 0.65/1.08  forward subsume time      0.00
% 0.65/1.08  back demod find time      0.00
% 0.65/1.08  conflict time             0.00
% 0.65/1.08  LRPO time                 0.00
% 0.65/1.08  store clause time         0.00
% 0.65/1.08  disable clause time       0.00
% 0.65/1.08  prime paramod time        0.00
% 0.65/1.08  semantics time            0.00
% 0.65/1.08  
% 0.65/1.08  EQP interrupted
%------------------------------------------------------------------------------