TPTP Problem File: TOP052-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : TOP052-1 : TPTP v9.0.0. Released v8.1.0.
% Domain : Topology (Knot theory)
% Problem : Haken unknot
% Version : [FL14] axioms.
% English :
% Refs : [FL14] Fish & Lisitsa (2014), Detecting Unknots via Equationa
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names : haken.p [WM89]
% Status : Unsatisfiable
% Rating : 0.64 v9.0.0, 0.59 v8.2.0, 0.67 v8.1.0
% Syntax : Number of clauses : 145 ( 145 unt; 0 nHn; 142 RR)
% Number of literals : 145 ( 145 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 143 ( 143 usr; 141 con; 0-140 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : See https://cgi.csc.liv.ac.uk/~alexei/Unknot/
%------------------------------------------------------------------------------
cnf(involutory_quandle,axiom,
product(X,X) = X ).
cnf(involutory_quandle_01,axiom,
product(product(X,Y),Y) = X ).
cnf(involutory_quandle_02,axiom,
product(product(X,Y),Z) = product(product(X,Z),product(Y,Z)) ).
cnf(knot,axiom,
a2 = product(a1,a42) ).
cnf(knot_03,axiom,
a3 = product(a2,a41) ).
cnf(knot_04,axiom,
a4 = product(a3,a14) ).
cnf(knot_05,axiom,
a5 = product(a4,a39) ).
cnf(knot_06,axiom,
a6 = product(a5,a136) ).
cnf(knot_07,axiom,
a7 = product(a6,a52) ).
cnf(knot_08,axiom,
a8 = product(a7,a17) ).
cnf(knot_09,axiom,
a9 = product(a8,a56) ).
cnf(knot_10,axiom,
a10 = product(a9,a134) ).
cnf(knot_11,axiom,
a11 = product(a10,a37) ).
cnf(knot_12,axiom,
a12 = product(a11,a21) ).
cnf(knot_13,axiom,
a13 = product(a12,a23) ).
cnf(knot_14,axiom,
a14 = product(a13,a32) ).
cnf(knot_15,axiom,
a15 = product(a14,a53) ).
cnf(knot_16,axiom,
a16 = product(a15,a136) ).
cnf(knot_17,axiom,
a17 = product(a16,a29) ).
cnf(knot_18,axiom,
a18 = product(a17,a133) ).
cnf(knot_19,axiom,
a19 = product(a18,a58) ).
cnf(knot_20,axiom,
a20 = product(a19,a26) ).
cnf(knot_21,axiom,
a21 = product(a20,a35) ).
cnf(knot_22,axiom,
a22 = product(a21,a141) ).
cnf(knot_23,axiom,
a23 = product(a22,a45) ).
cnf(knot_24,axiom,
a24 = product(a23,a35) ).
cnf(knot_25,axiom,
a25 = product(a24,a49) ).
cnf(knot_26,axiom,
a26 = product(a25,a138) ).
cnf(knot_27,axiom,
a27 = product(a26,a8) ).
cnf(knot_28,axiom,
a28 = product(a27,a37) ).
cnf(knot_29,axiom,
a29 = product(a28,a17) ).
cnf(knot_30,axiom,
a30 = product(a29,a14) ).
cnf(knot_31,axiom,
a31 = product(a30,a5) ).
cnf(knot_32,axiom,
a32 = product(a31,a39) ).
cnf(knot_33,axiom,
a33 = product(a32,a13) ).
cnf(knot_34,axiom,
a34 = product(a33,a131) ).
cnf(knot_35,axiom,
a35 = product(a34,a60) ).
cnf(knot_36,axiom,
a36 = product(a35,a139) ).
cnf(knot_37,axiom,
a37 = product(a36,a47) ).
cnf(knot_38,axiom,
a38 = product(a37,a17) ).
cnf(knot_39,axiom,
a39 = product(a38,a7) ).
cnf(knot_40,axiom,
a40 = product(a39,a4) ).
cnf(knot_41,axiom,
a41 = product(a40,a14) ).
cnf(knot_42,axiom,
a42 = product(a41,a2) ).
cnf(knot_43,axiom,
a43 = product(a42,a62) ).
cnf(knot_44,axiom,
a44 = product(a43,a128) ).
cnf(knot_45,axiom,
a45 = product(a44,a23) ).
cnf(knot_46,axiom,
a46 = product(a45,a141) ).
cnf(knot_47,axiom,
a47 = product(a46,a11) ).
cnf(knot_48,axiom,
a48 = product(a47,a20) ).
cnf(knot_49,axiom,
a49 = product(a48,a138) ).
cnf(knot_50,axiom,
a50 = product(a49,a131) ).
cnf(knot_51,axiom,
a51 = product(a50,a59) ).
cnf(knot_52,axiom,
a52 = product(a51,a39) ).
cnf(knot_53,axiom,
a53 = product(a52,a136) ).
cnf(knot_54,axiom,
a54 = product(a53,a29) ).
cnf(knot_55,axiom,
a55 = product(a54,a135) ).
cnf(knot_56,axiom,
a56 = product(a55,a37) ).
cnf(knot_57,axiom,
a57 = product(a56,a134) ).
cnf(knot_58,axiom,
a58 = product(a57,a26) ).
cnf(knot_59,axiom,
a59 = product(a58,a138) ).
cnf(knot_60,axiom,
a60 = product(a59,a131) ).
cnf(knot_61,axiom,
a61 = product(a60,a13) ).
cnf(knot_62,axiom,
a62 = product(a61,a1) ).
cnf(knot_63,axiom,
a63 = product(a62,a96) ).
cnf(knot_64,axiom,
a64 = product(a63,a127) ).
cnf(knot_65,axiom,
a65 = product(a64,a41) ).
cnf(knot_66,axiom,
a66 = product(a65,a2) ).
cnf(knot_67,axiom,
a67 = product(a66,a92) ).
cnf(knot_68,axiom,
a68 = product(a67,a98) ).
cnf(knot_69,axiom,
a69 = product(a68,a32) ).
cnf(knot_70,axiom,
a70 = product(a69,a13) ).
cnf(knot_71,axiom,
a71 = product(a70,a118) ).
cnf(knot_72,axiom,
a72 = product(a71,a109) ).
cnf(knot_73,axiom,
a73 = product(a72,a82) ).
cnf(knot_74,axiom,
a74 = product(a73,a32) ).
cnf(knot_75,axiom,
a75 = product(a74,a14) ).
cnf(knot_76,axiom,
a76 = product(a75,a68) ).
cnf(knot_77,axiom,
a77 = product(a76,a114) ).
cnf(knot_78,axiom,
a78 = product(a77,a13) ).
cnf(knot_79,axiom,
a79 = product(a78,a33) ).
cnf(knot_80,axiom,
a80 = product(a79,a119) ).
cnf(knot_81,axiom,
a81 = product(a80,a70) ).
cnf(knot_82,axiom,
a82 = product(a81,a109) ).
cnf(knot_83,axiom,
a83 = product(a82,a118) ).
cnf(knot_84,axiom,
a84 = product(a83,a39) ).
cnf(knot_85,axiom,
a85 = product(a84,a5) ).
cnf(knot_86,axiom,
a86 = product(a85,a30) ).
cnf(knot_87,axiom,
a87 = product(a86,a104) ).
cnf(knot_88,axiom,
a88 = product(a87,a4) ).
cnf(knot_89,axiom,
a89 = product(a88,a14) ).
cnf(knot_90,axiom,
a90 = product(a89,a41) ).
cnf(knot_91,axiom,
a91 = product(a90,a100) ).
cnf(knot_92,axiom,
a92 = product(a91,a124) ).
cnf(knot_93,axiom,
a93 = product(a92,a2) ).
cnf(knot_94,axiom,
a94 = product(a93,a41) ).
cnf(knot_95,axiom,
a95 = product(a94,a127) ).
cnf(knot_96,axiom,
a96 = product(a95,a64) ).
cnf(knot_97,axiom,
a97 = product(a96,a42) ).
cnf(knot_98,axiom,
a98 = product(a97,a1) ).
cnf(knot_99,axiom,
a99 = product(a98,a92) ).
cnf(knot_100,axiom,
a100 = product(a99,a124) ).
cnf(knot_101,axiom,
a101 = product(a100,a14) ).
cnf(knot_102,axiom,
a102 = product(a101,a40) ).
cnf(knot_103,axiom,
a103 = product(a102,a4) ).
cnf(knot_104,axiom,
a104 = product(a103,a87) ).
cnf(knot_105,axiom,
a105 = product(a104,a30) ).
cnf(knot_106,axiom,
a106 = product(a105,a5) ).
cnf(knot_107,axiom,
a107 = product(a106,a84) ).
cnf(knot_108,axiom,
a108 = product(a107,a39) ).
cnf(knot_109,axiom,
a109 = product(a108,a118) ).
cnf(knot_110,axiom,
a110 = product(a109,a70) ).
cnf(knot_111,axiom,
a111 = product(a110,a119) ).
cnf(knot_112,axiom,
a112 = product(a111,a79) ).
cnf(knot_113,axiom,
a113 = product(a112,a33) ).
cnf(knot_114,axiom,
a114 = product(a113,a13) ).
cnf(knot_115,axiom,
a115 = product(a114,a68) ).
cnf(knot_116,axiom,
a116 = product(a115,a14) ).
cnf(knot_117,axiom,
a117 = product(a116,a74) ).
cnf(knot_118,axiom,
a118 = product(a117,a32) ).
cnf(knot_119,axiom,
a119 = product(a118,a70) ).
cnf(knot_120,axiom,
a120 = product(a119,a13) ).
cnf(knot_121,axiom,
a121 = product(a120,a32) ).
cnf(knot_122,axiom,
a122 = product(a121,a68) ).
cnf(knot_123,axiom,
a123 = product(a122,a115) ).
cnf(knot_124,axiom,
a124 = product(a123,a75) ).
cnf(knot_125,axiom,
a125 = product(a124,a2) ).
cnf(knot_126,axiom,
a126 = product(a125,a65) ).
cnf(knot_127,axiom,
a127 = product(a126,a41) ).
cnf(knot_128,axiom,
a128 = product(a127,a96) ).
cnf(knot_129,axiom,
a129 = product(a128,a62) ).
cnf(knot_130,axiom,
a130 = product(a129,a1) ).
cnf(knot_131,axiom,
a131 = product(a130,a13) ).
cnf(knot_132,axiom,
a132 = product(a131,a138) ).
cnf(knot_133,axiom,
a133 = product(a132,a58) ).
cnf(knot_134,axiom,
a134 = product(a133,a26) ).
cnf(knot_135,axiom,
a135 = product(a134,a37) ).
cnf(knot_136,axiom,
a136 = product(a135,a29) ).
cnf(knot_137,axiom,
a137 = product(a136,a39) ).
cnf(knot_138,axiom,
a138 = product(a137,a51) ).
cnf(knot_139,axiom,
a139 = product(a138,a20) ).
cnf(knot_140,axiom,
a140 = product(a139,a47) ).
cnf(knot_141,axiom,
a141 = product(a140,a11) ).
cnf(knot_142,axiom,
a1 = product(a141,a23) ).
cnf(goal,negated_conjecture,
tuple(a1,a2,a41,a42,a3,a40,a4,a13,a14,a5,a38,a39,a6,a135,a136,a7,a52,a51,a8,a16,a17,a9,a55,a56,a10,a133,a134,a11,a36,a37,a12,a21,a20,a23,a31,a32,a15,a53,a28,a29,a18,a132,a19,a58,a57,a20,a25,a26,a34,a35,a140,a44,a45,a24,a48,a49,a138,a137,a27,a30,a33,a130,a131,a59,a60,a139,a46,a47,a43,a61,a62,a127,a128,a50,a54,a63,a95,a96,a64,a126,a65,a66,a67,a91,a92,a68,a97,a98,a69,a70,a71,a118,a117,a72,a108,a109,a73,a81,a82,a74,a75,a76,a77,a113,a114,a78,a79,a80,a119,a83,a84,a85,a86,a87,a103,a104,a88,a89,a90,a99,a100,a123,a124,a93,a94,a101,a102,a105,a106,a107,a110,a111,a112,a115,a116,a120,a121,a122,a125,a129) != tuple(a2,a3,a42,a43,a4,a41,a5,a14,a15,a6,a39,a40,a7,a136,a137,a8,a53,a52,a9,a17,a18,a10,a56,a57,a11,a134,a135,a12,a37,a38,a13,a23,a21,a24,a32,a33,a16,a54,a29,a30,a19,a133,a20,a59,a58,a22,a26,a27,a35,a36,a141,a45,a46,a25,a49,a50,a139,a138,a28,a31,a34,a131,a132,a60,a61,a140,a47,a48,a44,a62,a63,a128,a129,a51,a55,a64,a96,a97,a65,a127,a66,a67,a68,a92,a93,a69,a98,a99,a70,a71,a72,a119,a118,a73,a109,a110,a74,a82,a83,a75,a76,a77,a78,a114,a115,a79,a80,a81,a120,a84,a85,a86,a87,a88,a104,a105,a89,a90,a91,a100,a101,a124,a125,a94,a95,a102,a103,a106,a107,a108,a111,a112,a113,a116,a117,a121,a122,a123,a126,a130) ).
%------------------------------------------------------------------------------