TPTP Problem File: TOP047+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : TOP047+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Topology
% Problem : Compactness of Lim-inf Topology T08
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [BE01] Bancerek & Endou (2001), Compactness of Lim-inf Topolo
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t8_waybel33 [Urb08]
% Status : Theorem
% Rating : 0.55 v9.0.0, 0.56 v8.2.0, 0.53 v8.1.0, 0.58 v7.5.0, 0.59 v7.4.0, 0.50 v7.3.0, 0.55 v7.1.0, 0.52 v7.0.0, 0.57 v6.4.0, 0.62 v6.3.0, 0.58 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.74 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.80 v5.1.0, 0.81 v5.0.0, 0.83 v3.7.0, 0.85 v3.5.0, 0.84 v3.4.0
% Syntax : Number of formulae : 102 ( 23 unt; 0 def)
% Number of atoms : 352 ( 21 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 297 ( 47 ~; 1 |; 154 &)
% ( 6 <=>; 89 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 40 ( 38 usr; 1 prp; 0-3 aty)
% Number of functors : 14 ( 14 usr; 1 con; 0-2 aty)
% Number of variables : 163 ( 132 !; 31 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t8_waybel33,conjecture,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v24_waybel_0(A)
& v25_waybel_0(A)
& v2_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v24_waybel_0(B)
& v25_waybel_0(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ( g1_orders_2(u1_struct_0(A),u1_orders_2(A)) = g1_orders_2(u1_struct_0(B),u1_orders_2(B))
=> k14_yellow_6(A,k3_waybel28(A)) = k14_yellow_6(B,k3_waybel28(B)) ) ) ) ).
fof(abstractness_v1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_orders_2(A)
=> A = g1_orders_2(u1_struct_0(A),u1_orders_2(A)) ) ) ).
fof(abstractness_v1_pre_topc,axiom,
! [A] :
( l1_pre_topc(A)
=> ( v1_pre_topc(A)
=> A = g1_pre_topc(u1_struct_0(A),u1_pre_topc(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc11_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_yellow_0(A) ) ) ) ).
fof(cc13_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_relat_1(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc1_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_xboole_0(B)
=> ( v3_pre_topc(B,A)
& v4_pre_topc(B,A) ) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v2_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc2_tops_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_xboole_0(B)
=> v2_tops_1(B,A) ) ) ) ).
fof(cc3_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_xboole_0(B)
=> v3_tops_1(B,A) ) ) ) ).
fof(cc4_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v3_tops_1(B,A)
=> v2_tops_1(B,A) ) ) ) ).
fof(cc5_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( ( v4_pre_topc(B,A)
& v2_tops_1(B,A) )
=> ( v2_tops_1(B,A)
& v3_tops_1(B,A) ) ) ) ) ).
fof(cc6_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( ( v3_pre_topc(B,A)
& v3_tops_1(B,A) )
=> ( v1_xboole_0(B)
& v3_pre_topc(B,A)
& v4_pre_topc(B,A)
& v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B)
& v2_tops_1(B,A)
& v3_tops_1(B,A) ) ) ) ) ).
fof(cc7_yellow_6,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ! [B] :
( m4_yellow_6(B,A)
=> v1_relat_1(B) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( r1_tarski(A,B)
& r1_tarski(B,A) ) ) ).
fof(d27_yellow_6,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ! [B] :
( m4_yellow_6(B,A)
=> ! [C] :
( ( v1_pre_topc(C)
& l1_pre_topc(C) )
=> ( C = k14_yellow_6(A,B)
<=> ( u1_struct_0(C) = u1_struct_0(A)
& u1_pre_topc(C) = a_2_1_yellow_6(A,B) ) ) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( v1_orders_2(g1_orders_2(A,B))
& l1_orders_2(g1_orders_2(A,B)) ) ) ).
fof(dt_g1_pre_topc,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( v1_pre_topc(g1_pre_topc(A,B))
& l1_pre_topc(g1_pre_topc(A,B)) ) ) ).
fof(dt_k14_yellow_6,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m4_yellow_6(B,A) )
=> ( v1_pre_topc(k14_yellow_6(A,B))
& l1_pre_topc(k14_yellow_6(A,B)) ) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_waybel28,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> m4_yellow_6(k3_waybel28(A),A) ) ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( l1_pre_topc(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l1_waybel_0,axiom,
! [A] :
( l1_struct_0(A)
=> ! [B] :
( l1_waybel_0(B,A)
=> l1_orders_2(B) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_m4_yellow_6,axiom,
$true ).
fof(dt_u1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> m2_relset_1(u1_orders_2(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_u1_pre_topc,axiom,
! [A] :
( l1_pre_topc(A)
=> m1_subset_1(u1_pre_topc(A),k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_pre_topc,axiom,
? [A] : l1_pre_topc(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l1_waybel_0,axiom,
! [A] :
( l1_struct_0(A)
=> ? [B] : l1_waybel_0(B,A) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(existence_m4_yellow_6,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] : m4_yellow_6(B,A) ) ).
fof(fc12_relat_1,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_relat_1(k1_xboole_0)
& v3_relat_1(k1_xboole_0) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc1_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_tarski(A))
& v1_finset_1(k1_tarski(A)) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc24_yellow_6,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m4_yellow_6(B,A) )
=> ( ~ v3_struct_0(k14_yellow_6(A,B))
& v1_pre_topc(k14_yellow_6(A,B)) ) ) ).
fof(fc25_yellow_6,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m4_yellow_6(B,A) )
=> ( ~ v3_struct_0(k14_yellow_6(A,B))
& v1_pre_topc(k14_yellow_6(A,B))
& v2_pre_topc(k14_yellow_6(A,B)) ) ) ).
fof(fc2_finset_1,axiom,
! [A,B] :
( ~ v1_xboole_0(k2_tarski(A,B))
& v1_finset_1(k2_tarski(A,B)) ) ).
fof(fc2_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_tarski(A)) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).
fof(fc4_relat_1,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_relat_1(k1_xboole_0) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(fraenkel_a_2_1_yellow_6,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(B)
& l1_struct_0(B)
& m4_yellow_6(C,B) )
=> ( r2_hidden(A,a_2_1_yellow_6(B,C))
<=> ? [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
& A = D
& ! [E] :
( m1_subset_1(E,u1_struct_0(B))
=> ( r2_hidden(E,D)
=> ! [F] :
( ( ~ v3_struct_0(F)
& v3_orders_2(F)
& v7_waybel_0(F)
& l1_waybel_0(F,B) )
=> ( r2_hidden(k4_tarski(F,E),C)
=> r1_waybel_0(B,F,D) ) ) ) ) ) ) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ! [C,D] :
( g1_orders_2(A,B) = g1_orders_2(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(free_g1_pre_topc,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C,D] :
( g1_pre_topc(A,B) = g1_pre_topc(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(l12_waybel33,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v24_waybel_0(A)
& v25_waybel_0(A)
& v2_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v24_waybel_0(B)
& v25_waybel_0(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ( g1_orders_2(u1_struct_0(A),u1_orders_2(A)) = g1_orders_2(u1_struct_0(B),u1_orders_2(B))
=> r1_tarski(u1_pre_topc(k14_yellow_6(A,k3_waybel28(A))),u1_pre_topc(k14_yellow_6(B,k3_waybel28(B)))) ) ) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( v1_xboole_0(A)
& v1_relat_1(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v3_pre_topc(B,A) ) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_relat_1(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v3_pre_topc(B,A)
& v4_pre_topc(B,A) ) ) ).
fof(rc2_waybel_7,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( v1_relat_1(A)
& v3_relat_1(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc3_tops_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v3_pre_topc(B,A)
& v4_pre_topc(B,A) ) ) ).
fof(rc3_waybel_7,axiom,
! [A] :
( l1_struct_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v3_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc4_tops_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v1_xboole_0(B)
& v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B)
& v2_tops_1(B,A) ) ) ).
fof(rc4_yellow_6,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v3_orders_2(A)
& v7_waybel_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc5_tops_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v1_xboole_0(B)
& v3_pre_topc(B,A)
& v4_pre_topc(B,A)
& v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B)
& v2_tops_1(B,A)
& v3_tops_1(B,A) ) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------