TPTP Problem File: TOP027+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : TOP027+3 : TPTP v9.0.0. Released v3.4.0.
% Domain : Topology
% Problem : Maximal Kolmogorov Subspaces of a Topological Space T08
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Kar96] Karno (1996), Maximal Kolmogorov Subspaces of a Topolo
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t8_tsp_2 [Urb08]
% Status : Theorem
% Rating : 0.70 v9.0.0, 0.72 v8.2.0, 0.81 v7.4.0, 0.83 v7.1.0, 0.78 v7.0.0, 0.83 v6.4.0, 0.77 v6.3.0, 0.75 v6.2.0, 0.84 v6.1.0, 0.90 v6.0.0, 0.91 v5.5.0, 0.93 v5.4.0, 0.96 v5.2.0, 0.95 v5.0.0, 0.92 v4.1.0, 0.91 v4.0.1, 1.00 v3.4.0
% Syntax : Number of formulae : 13483 (2725 unt; 0 def)
% Number of atoms : 83399 (9380 equ)
% Maximal formula atoms : 52 ( 6 avg)
% Number of connectives : 80363 (10447 ~; 460 |;39925 &)
% (2303 <=>;27228 =>; 0 <=; 0 <~>)
% Maximal formula depth : 36 ( 7 avg)
% Maximal term depth : 7 ( 1 avg)
% Number of predicates : 770 ( 768 usr; 2 prp; 0-6 aty)
% Number of functors : 1946 (1946 usr; 510 con; 0-10 aty)
% Number of variables : 33457 (31865 !;1592 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Chainy small version: includes all preceding MML articles that
% are included in any Bushy version.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
include('Axioms/SET007/SET007+0.ax').
include('Axioms/SET007/SET007+1.ax').
include('Axioms/SET007/SET007+2.ax').
include('Axioms/SET007/SET007+3.ax').
include('Axioms/SET007/SET007+4.ax').
include('Axioms/SET007/SET007+5.ax').
include('Axioms/SET007/SET007+6.ax').
include('Axioms/SET007/SET007+7.ax').
include('Axioms/SET007/SET007+8.ax').
include('Axioms/SET007/SET007+9.ax').
include('Axioms/SET007/SET007+10.ax').
include('Axioms/SET007/SET007+11.ax').
include('Axioms/SET007/SET007+13.ax').
include('Axioms/SET007/SET007+14.ax').
include('Axioms/SET007/SET007+15.ax').
include('Axioms/SET007/SET007+16.ax').
include('Axioms/SET007/SET007+17.ax').
include('Axioms/SET007/SET007+18.ax').
include('Axioms/SET007/SET007+19.ax').
include('Axioms/SET007/SET007+20.ax').
include('Axioms/SET007/SET007+21.ax').
include('Axioms/SET007/SET007+22.ax').
include('Axioms/SET007/SET007+23.ax').
include('Axioms/SET007/SET007+24.ax').
include('Axioms/SET007/SET007+25.ax').
include('Axioms/SET007/SET007+26.ax').
include('Axioms/SET007/SET007+31.ax').
include('Axioms/SET007/SET007+32.ax').
include('Axioms/SET007/SET007+33.ax').
include('Axioms/SET007/SET007+34.ax').
include('Axioms/SET007/SET007+35.ax').
include('Axioms/SET007/SET007+40.ax').
include('Axioms/SET007/SET007+48.ax').
include('Axioms/SET007/SET007+50.ax').
include('Axioms/SET007/SET007+51.ax').
include('Axioms/SET007/SET007+54.ax').
include('Axioms/SET007/SET007+55.ax').
include('Axioms/SET007/SET007+59.ax').
include('Axioms/SET007/SET007+60.ax').
include('Axioms/SET007/SET007+61.ax').
include('Axioms/SET007/SET007+64.ax').
include('Axioms/SET007/SET007+66.ax').
include('Axioms/SET007/SET007+67.ax').
include('Axioms/SET007/SET007+68.ax').
include('Axioms/SET007/SET007+71.ax').
include('Axioms/SET007/SET007+75.ax').
include('Axioms/SET007/SET007+76.ax').
include('Axioms/SET007/SET007+77.ax').
include('Axioms/SET007/SET007+79.ax').
include('Axioms/SET007/SET007+80.ax').
include('Axioms/SET007/SET007+86.ax').
include('Axioms/SET007/SET007+91.ax').
include('Axioms/SET007/SET007+117.ax').
include('Axioms/SET007/SET007+125.ax').
include('Axioms/SET007/SET007+126.ax').
include('Axioms/SET007/SET007+148.ax').
include('Axioms/SET007/SET007+159.ax').
include('Axioms/SET007/SET007+165.ax').
include('Axioms/SET007/SET007+170.ax').
include('Axioms/SET007/SET007+182.ax').
include('Axioms/SET007/SET007+186.ax').
include('Axioms/SET007/SET007+188.ax').
include('Axioms/SET007/SET007+190.ax').
include('Axioms/SET007/SET007+200.ax').
include('Axioms/SET007/SET007+202.ax').
include('Axioms/SET007/SET007+205.ax').
include('Axioms/SET007/SET007+206.ax').
include('Axioms/SET007/SET007+207.ax').
include('Axioms/SET007/SET007+209.ax').
include('Axioms/SET007/SET007+210.ax').
include('Axioms/SET007/SET007+211.ax').
include('Axioms/SET007/SET007+212.ax').
include('Axioms/SET007/SET007+213.ax').
include('Axioms/SET007/SET007+217.ax').
include('Axioms/SET007/SET007+218.ax').
include('Axioms/SET007/SET007+223.ax').
include('Axioms/SET007/SET007+224.ax').
include('Axioms/SET007/SET007+225.ax').
include('Axioms/SET007/SET007+227.ax').
include('Axioms/SET007/SET007+237.ax').
include('Axioms/SET007/SET007+241.ax').
include('Axioms/SET007/SET007+242.ax').
include('Axioms/SET007/SET007+246.ax').
include('Axioms/SET007/SET007+247.ax').
include('Axioms/SET007/SET007+248.ax').
include('Axioms/SET007/SET007+252.ax').
include('Axioms/SET007/SET007+253.ax').
include('Axioms/SET007/SET007+255.ax').
include('Axioms/SET007/SET007+256.ax').
include('Axioms/SET007/SET007+276.ax').
include('Axioms/SET007/SET007+278.ax').
include('Axioms/SET007/SET007+279.ax').
include('Axioms/SET007/SET007+280.ax').
include('Axioms/SET007/SET007+281.ax').
include('Axioms/SET007/SET007+293.ax').
include('Axioms/SET007/SET007+295.ax').
include('Axioms/SET007/SET007+297.ax').
include('Axioms/SET007/SET007+298.ax').
include('Axioms/SET007/SET007+299.ax').
include('Axioms/SET007/SET007+301.ax').
include('Axioms/SET007/SET007+308.ax').
include('Axioms/SET007/SET007+309.ax').
include('Axioms/SET007/SET007+311.ax').
include('Axioms/SET007/SET007+312.ax').
include('Axioms/SET007/SET007+317.ax').
include('Axioms/SET007/SET007+321.ax').
include('Axioms/SET007/SET007+322.ax').
include('Axioms/SET007/SET007+327.ax').
include('Axioms/SET007/SET007+335.ax').
include('Axioms/SET007/SET007+338.ax').
include('Axioms/SET007/SET007+339.ax').
include('Axioms/SET007/SET007+354.ax').
include('Axioms/SET007/SET007+363.ax').
include('Axioms/SET007/SET007+365.ax').
include('Axioms/SET007/SET007+370.ax').
include('Axioms/SET007/SET007+375.ax').
include('Axioms/SET007/SET007+377.ax').
include('Axioms/SET007/SET007+384.ax').
include('Axioms/SET007/SET007+387.ax').
include('Axioms/SET007/SET007+388.ax').
include('Axioms/SET007/SET007+393.ax').
include('Axioms/SET007/SET007+394.ax').
include('Axioms/SET007/SET007+395.ax').
include('Axioms/SET007/SET007+396.ax').
include('Axioms/SET007/SET007+399.ax').
include('Axioms/SET007/SET007+401.ax').
include('Axioms/SET007/SET007+405.ax').
include('Axioms/SET007/SET007+406.ax').
%------------------------------------------------------------------------------
fof(dt_k1_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> ( v1_funct_1(k1_tsp_2(A,B))
& v1_funct_2(k1_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B))
& v5_pre_topc(k1_tsp_2(A,B),A,B)
& m2_relset_1(k1_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(dt_k2_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> ( v1_funct_1(k2_tsp_2(A,B))
& v1_funct_2(k2_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B))
& v5_pre_topc(k2_tsp_2(A,B),A,B)
& m2_relset_1(k2_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(redefinition_k2_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> k2_tsp_2(A,B) = k1_tsp_2(A,B) ) ).
fof(dt_k3_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> ( v1_funct_1(k3_tsp_2(A,B))
& v1_funct_2(k3_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B))
& v5_pre_topc(k3_tsp_2(A,B),A,B)
& m2_relset_1(k3_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(redefinition_k3_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> k3_tsp_2(A,B) = k1_tsp_2(A,B) ) ).
fof(dt_k4_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> ( v1_funct_1(k4_tsp_2(A,B))
& v1_funct_2(k4_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B))
& v5_pre_topc(k4_tsp_2(A,B),A,B)
& m2_relset_1(k4_tsp_2(A,B),u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(redefinition_k4_tsp_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& ~ v3_struct_0(B)
& v2_tsp_2(B,A)
& m1_pre_topc(B,A) )
=> k4_tsp_2(A,B) = k1_tsp_2(A,B) ) ).
fof(d1_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_1(B,A)
<=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( ( r2_hidden(C,B)
& r2_hidden(D,B) )
=> ( C = D
| r1_subset_1(k4_tex_4(A,C),k4_tex_4(A,D)) ) ) ) ) ) ) ) ).
fof(d2_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_1(B,A)
<=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( r2_hidden(C,B)
=> k5_subset_1(u1_struct_0(A),B,k4_tex_4(A,C)) = k1_struct_0(A,C) ) ) ) ) ) ).
fof(d3_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_1(B,A)
<=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ~ ( r2_hidden(C,B)
& ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(A)))
=> ~ ( v3_tex_4(D,A)
& k5_subset_1(u1_struct_0(A),B,D) = k1_struct_0(A,C) ) ) ) ) ) ) ) ).
fof(d4_tsp_2,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
<=> ( v1_tsp_1(B,A)
& ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
=> ( ( v1_tsp_1(C,A)
& r1_tarski(B,C) )
=> B = C ) ) ) ) ) ) ).
fof(t1_tsp_2,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( l1_pre_topc(B)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> ( ( g1_pre_topc(u1_struct_0(A),u1_pre_topc(A)) = g1_pre_topc(u1_struct_0(B),u1_pre_topc(B))
& C = D
& v1_tsp_2(C,A) )
=> v1_tsp_2(D,B) ) ) ) ) ) ).
fof(d5_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
<=> ( v1_tsp_1(B,A)
& k3_tex_4(A,B) = u1_struct_0(A) ) ) ) ) ).
fof(t2_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
=> v1_tops_1(B,A) ) ) ) ).
fof(t3_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ~ ( ( v3_pre_topc(B,A)
| v4_pre_topc(B,A) )
& v1_tsp_2(B,A)
& v1_tex_2(B,k1_zfmisc_1(u1_struct_0(A))) ) ) ) ).
fof(t4_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( ( v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> ~ v1_tsp_2(B,A) ) ) ).
fof(t5_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
=> ( v4_pre_topc(C,A)
=> C = k3_tex_4(A,k5_subset_1(u1_struct_0(A),B,C)) ) ) ) ) ) ).
fof(t6_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
=> ( v3_pre_topc(C,A)
=> C = k3_tex_4(A,k5_subset_1(u1_struct_0(A),B,C)) ) ) ) ) ) ).
fof(t7_tsp_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
=> k6_pre_topc(A,C) = k3_tex_4(A,k5_subset_1(u1_struct_0(A),B,k6_pre_topc(A,C))) ) ) ) ) ).
fof(t8_tsp_2,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v1_tsp_2(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
=> k1_tops_1(A,C) = k3_tex_4(A,k5_subset_1(u1_struct_0(A),B,k1_tops_1(A,C))) ) ) ) ) ).
%------------------------------------------------------------------------------