TPTP Problem File: SYO917_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO917_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : R is transitive, irreflexive, and has infinite chains
% Version : Especial.
% English :
% Refs : [PB+23] Parsert et al. (2023), Experiments on Infinite Model F
% : [Kal23] Kaliszyk (2023), Email to Geoff Sutcliffe
% Source : [Kal23]
% Names : infin1 [Kal23]
% Status : Satisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 3 ( 1 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 2 ( 1 >; 1 *; 0 +; 0 <<)
% Number of predicates : 1 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 6 (; 5 !; 1 ?; 6 :)
% SPC : TF0_SAT_NEQ_NAR
% Comments : UF logic
%------------------------------------------------------------------------------
tff('S',type,
'S': $tType ).
tff('R',type,
'R': ( 'S' * 'S' ) > $o ).
%----R transitive
%----∀ x:S y:S z:S ((R(x, y) ∧ R(y, z)) ⇒ R(x, z))
tff(formula_1,axiom,
! [X: 'S',Y: 'S',Z: 'S'] :
( ( 'R'(X,Y)
& 'R'(Y,Z) )
=> 'R'(X,Z) ) ).
%----R irreflexive
%----∀ x:S ¬R(x, x)
tff(formula_2,axiom,
! [X: 'S'] : ~ 'R'(X,X) ).
%----Infinite chains
%----(assert (forall ((x S)) (exists ((y S)) x y)))
tff(formula_3,axiom,
! [X: 'S'] :
? [Y: 'S'] : 'R'(X,Y) ).
%------------------------------------------------------------------------------