TPTP Problem File: SYO916_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO916_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : f is injective but not surjective
% Version : Especial.
% English :
% Refs : [PB+23] Parsert et al. (2023), Experiments on Infinite Model F
% : [Kal23] Kaliszyk (2023), Email to Geoff Sutcliffe
% Source : [Kal23]
% Names : infin0 [Kal23]
% Status : Satisfiable
% Rating : 0.33 v9.0.0
% Syntax : Number of formulae : 5 ( 1 unt; 3 typ; 0 def)
% Number of atoms : 3 ( 3 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 2 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of types : 1 ( 1 usr)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 3 (; 3 !; 0 ?; 3 :)
% SPC : TF0_SAT_EQU_NAR
% Comments : UF logic
%------------------------------------------------------------------------------
tff('S',type,
'S': $tType ).
tff(f,type,
f: 'S' > 'S' ).
tff(out,type,
out: 'S' ).
%----f injective
%----∀ x:S y:S ((f(x) = f(y)) ⇒ (x = y))
tff(formula_1,axiom,
! [X: 'S',Y: 'S'] :
( ( f(X) = f(Y) )
=> ( X = Y ) ) ).
%----Not surjective
%----∀ x:S ¬(f(x) = out)
tff(formula_2,axiom,
! [X: 'S'] : ( f(X) != out ) ).
%------------------------------------------------------------------------------