TPTP Problem File: SYO901^11.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SYO901^11 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Syntactic
% Problem  : Mixed modal propositional logic WFFs. problem 14
% Version  : [BP13] axioms.
% English  : 

% Refs     : [RO12]  Raths & Otten (2012), The QMLTP Problem Library for Fi
%          : [BP13]  Benzmueller & Paulson (2013), Quantified Multimodal Lo
%          : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% Source   : [TPTP]
% Names    : SYM168+1 [QMLTP]

% Status   : Theorem 
% Rating   : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0
% Syntax   : Number of formulae    :   24 (   9 unt;  13 typ;   8 def)
%            Number of atoms       :   34 (   8 equ;   0 cnn)
%            Maximal formula atoms :   12 (   3 avg)
%            Number of connectives :   44 (   1   ~;   1   |;   3   &;  35   @)
%                                         (   1 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   2 avg)
%            Number of types       :    2 (   1 usr)
%            Number of type conns  :   47 (  47   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   13 (  12 usr;   1 con; 0-3 aty)
%            Number of variables   :   25 (  19   ^;   5   !;   1   ?;  25   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This output was generated by embedproblem, version 1.7.1 (library
%            version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
%            'modal' embedding, version 1.5.2. Logic specification used:
%            $modal == [$constants == $rigid,$quantification == $varying,
%            $modalities == $modal_system_S5].
%------------------------------------------------------------------------------
thf(mworld,type,
    mworld: $tType ).

thf(mrel_type,type,
    mrel: mworld > mworld > $o ).

thf(mactual_type,type,
    mactual: mworld ).

thf(mlocal_type,type,
    mlocal: ( mworld > $o ) > $o ).

thf(mlocal_def,definition,
    ( mlocal
    = ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).

thf(mnot_type,type,
    mnot: ( mworld > $o ) > mworld > $o ).

thf(mand_type,type,
    mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).

thf(mor_type,type,
    mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).

thf(mimplies_type,type,
    mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).

thf(mequiv_type,type,
    mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).

thf(mnot_def,definition,
    ( mnot
    = ( ^ [A: mworld > $o,W: mworld] :
          ~ ( A @ W ) ) ) ).

thf(mand_def,definition,
    ( mand
    = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
          ( ( A @ W )
          & ( B @ W ) ) ) ) ).

thf(mor_def,definition,
    ( mor
    = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
          ( ( A @ W )
          | ( B @ W ) ) ) ) ).

thf(mimplies_def,definition,
    ( mimplies
    = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
          ( ( A @ W )
         => ( B @ W ) ) ) ) ).

thf(mequiv_def,definition,
    ( mequiv
    = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
          ( ( A @ W )
        <=> ( B @ W ) ) ) ) ).

thf(mbox_type,type,
    mbox: ( mworld > $o ) > mworld > $o ).

thf(mbox_def,definition,
    ( mbox
    = ( ^ [Phi: mworld > $o,W: mworld] :
        ! [V: mworld] :
          ( ( mrel @ W @ V )
         => ( Phi @ V ) ) ) ) ).

thf(mdia_type,type,
    mdia: ( mworld > $o ) > mworld > $o ).

thf(mdia_def,definition,
    ( mdia
    = ( ^ [Phi: mworld > $o,W: mworld] :
        ? [V: mworld] :
          ( ( mrel @ W @ V )
          & ( Phi @ V ) ) ) ) ).

thf(mrel_reflexive,axiom,
    ! [W: mworld] : ( mrel @ W @ W ) ).

thf(mrel_euclidean,axiom,
    ! [W: mworld,V: mworld,U: mworld] :
      ( ( ( mrel @ W @ U )
        & ( mrel @ W @ V ) )
     => ( mrel @ U @ V ) ) ).

thf(p_decl,type,
    p: mworld > $o ).

thf(q_decl,type,
    q: mworld > $o ).

thf(con,conjecture,
    mlocal @ ( mimplies @ ( mbox @ ( mequiv @ p @ q ) ) @ ( mbox @ ( mequiv @ ( mbox @ p ) @ ( mbox @ q ) ) ) ) ).

%------------------------------------------------------------------------------