TPTP Problem File: SYO606+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO606+1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Syntactic
% Problem : RM3 problem 5
% Version : Especial.
% English :
% Refs : [Pel16] Pelletier (2016), Email to Geoff Sutcliffe
% : [PSH17] Pelletier et al. (2017), Automated Reasoning for the D
% Source : [Pel16]
% Names : n05.p [Pel16]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.19 v8.2.0, 0.27 v8.1.0, 0.21 v7.5.0, 0.33 v7.4.0, 0.25 v7.3.0, 0.29 v7.2.0, 0.17 v7.1.0, 0.00 v7.0.0
% Syntax : Number of formulae : 9 ( 0 unt; 0 def)
% Number of atoms : 65 ( 0 equ)
% Maximal formula atoms : 41 ( 7 avg)
% Number of connectives : 70 ( 14 ~; 19 |; 31 &)
% ( 6 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 10 ( 10 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 55 ( 27 !; 28 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated from RM3 using the truth evaluation approach [PSH17].
%------------------------------------------------------------------------------
fof(nc5,conjecture,
( ( ! [A] :
( ! [B] : g_false_only(A,B)
| ? [B] : h_true_only(A,B) )
& ! [A,B] :
? [C] :
( g_false_only(A,B)
| h_true_only(A,C) ) )
| ( ? [A] :
( ( ? [B] : g_true_only(A,B)
& ( ( ? [B] : h_both(A,B)
& ~ ? [B] : h_true_only(A,B) )
| ! [B] : h_false_only(A,B) ) )
| ( ? [B] : g_both(A,B)
& ~ ? [B] : g_true_only(A,B)
& ! [B] : h_false_only(A,B) ) )
& ? [A,B] :
! [C] :
( ( g_true_only(A,B)
& ( h_both(A,C)
| h_false_only(A,C) ) )
| ( g_both(A,B)
& h_false_only(A,C) ) ) )
| ( ? [A] :
( ? [B] : g_both(A,B)
& ~ ? [B] : g_true_only(A,B)
& ? [B] : h_both(A,B)
& ~ ? [B] : h_true_only(A,B) )
& ~ ? [A] :
( ( ? [B] : g_true_only(A,B)
& ( ( ? [B] : h_both(A,B)
& ~ ? [B] : h_true_only(A,B) )
| ! [B] : h_false_only(A,B) ) )
| ( ? [B] : g_both(A,B)
& ~ ? [B] : g_true_only(A,B)
& ! [B] : h_false_only(A,B) ) )
& ? [A] :
( ? [B] :
( ? [C] :
( g_both(A,B)
& h_both(A,C) )
& ~ ? [C] :
( g_false_only(A,B)
| h_true_only(A,C) ) )
& ~ ? [B] :
! [C] :
( ( g_true_only(A,B)
& ( h_both(A,C)
| h_false_only(A,C) ) )
| ( g_both(A,B)
& h_false_only(A,C) ) ) )
& ~ ? [A,B] :
! [C] :
( ( g_true_only(A,B)
& ( h_both(A,C)
| h_false_only(A,C) ) )
| ( g_both(A,B)
& h_false_only(A,C) ) ) ) ) ).
fof(true_only_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
<=> ( g_true(X_2,X_1)
& ~ g_false(X_2,X_1) ) ) ).
fof(both_g,axiom,
! [X_2,X_1] :
( g_both(X_2,X_1)
<=> ( g_true(X_2,X_1)
& g_false(X_2,X_1) ) ) ).
fof(false_only_g,axiom,
! [X_2,X_1] :
( g_false_only(X_2,X_1)
<=> ( g_false(X_2,X_1)
& ~ g_true(X_2,X_1) ) ) ).
fof(exhaustion_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
| g_both(X_2,X_1)
| g_false_only(X_2,X_1) ) ).
fof(true_only_h,axiom,
! [X_2,X_1] :
( h_true_only(X_2,X_1)
<=> ( h_true(X_2,X_1)
& ~ h_false(X_2,X_1) ) ) ).
fof(both_h,axiom,
! [X_2,X_1] :
( h_both(X_2,X_1)
<=> ( h_true(X_2,X_1)
& h_false(X_2,X_1) ) ) ).
fof(false_only_h,axiom,
! [X_2,X_1] :
( h_false_only(X_2,X_1)
<=> ( h_false(X_2,X_1)
& ~ h_true(X_2,X_1) ) ) ).
fof(exhaustion_h,axiom,
! [X_2,X_1] :
( h_true_only(X_2,X_1)
| h_both(X_2,X_1)
| h_false_only(X_2,X_1) ) ).
%------------------------------------------------------------------------------