TPTP Problem File: SYO604+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO604+1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Syntactic
% Problem : RM3 problem 3
% Version : Especial.
% English :
% Refs : [Pel16] Pelletier (2016), Email to Geoff Sutcliffe
% : [PSH17] Pelletier et al. (2017), Automated Reasoning for the D
% Source : [Pel16]
% Names : 17 [PSH17]
% : n03.p [Pel16]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.25 v8.2.0, 0.20 v8.1.0, 0.21 v7.5.0, 0.29 v7.4.0, 0.38 v7.3.0, 0.43 v7.2.0, 0.33 v7.1.0, 0.25 v7.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 71 ( 0 equ)
% Maximal formula atoms : 59 ( 14 avg)
% Number of connectives : 85 ( 19 ~; 24 |; 39 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 35 ( 15 !; 20 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated from RM3 using the truth evaluation approach [PSH17].
%------------------------------------------------------------------------------
fof(nc3,conjecture,
( ! [A] :
? [B] :
( ( g_true_only(B,A)
& ( ( ? [C] :
( ( g_both(B,C)
| g_both(C,B) )
& ~ g_false_only(B,C)
& ~ g_false_only(C,B) )
& ~ ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) )
| ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) )
| ( g_both(B,A)
& ( ! [C] :
( g_false_only(B,C)
| g_false_only(C,B) )
| ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) )
| ( g_false_only(B,A)
& ( ! [C] :
( g_false_only(B,C)
| g_false_only(C,B) )
| ( ? [C] :
( ( g_both(B,C)
| g_both(C,B) )
& ~ g_false_only(B,C)
& ~ g_false_only(C,B) )
& ~ ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) ) ) )
| ( ? [A] :
( ? [B] :
( g_both(B,A)
& ? [C] :
( ( g_both(B,C)
| g_both(C,B) )
& ~ g_false_only(B,C)
& ~ g_false_only(C,B) )
& ~ ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) )
& ~ ? [B] :
( ( g_true_only(B,A)
& ( ( ? [C] :
( ( g_both(B,C)
| g_both(C,B) )
& ~ g_false_only(B,C)
& ~ g_false_only(C,B) )
& ~ ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) )
| ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) )
| ( g_both(B,A)
& ( ! [C] :
( g_false_only(B,C)
| g_false_only(C,B) )
| ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) )
| ( g_false_only(B,A)
& ( ! [C] :
( g_false_only(B,C)
| g_false_only(C,B) )
| ( ? [C] :
( ( g_both(B,C)
| g_both(C,B) )
& ~ g_false_only(B,C)
& ~ g_false_only(C,B) )
& ~ ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) ) ) ) )
& ~ ? [A] :
! [B] :
( ( g_true_only(B,A)
& ! [C] :
( g_false_only(B,C)
| g_false_only(C,B) ) )
| ( g_false_only(B,A)
& ? [C] :
( g_true_only(B,C)
& g_true_only(C,B) ) ) ) ) ) ).
fof(true_only_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
<=> ( g_true(X_2,X_1)
& ~ g_false(X_2,X_1) ) ) ).
fof(both_g,axiom,
! [X_2,X_1] :
( g_both(X_2,X_1)
<=> ( g_true(X_2,X_1)
& g_false(X_2,X_1) ) ) ).
fof(false_only_g,axiom,
! [X_2,X_1] :
( g_false_only(X_2,X_1)
<=> ( g_false(X_2,X_1)
& ~ g_true(X_2,X_1) ) ) ).
fof(exhaustion_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
| g_both(X_2,X_1)
| g_false_only(X_2,X_1) ) ).
%------------------------------------------------------------------------------