TPTP Problem File: SYO558^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO558^1 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Syntactic
% Problem : Forall on $i can be expressed in terms of choice on $
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE30 [Bro11]
% Status : Theorem
% Rating : 0.33 v8.1.0, 0.50 v7.5.0
% Syntax : Number of formulae : 3 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 11 ( 1 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 1 usr; 1 con; 0-2 aty)
% ( 1 !!; 0 ??; 0 @@+; 0 @@-)
% Number of variables : 5 ( 3 ^; 1 !; 1 ?; 5 :)
% SPC : TH1_THM_EQU_NAR
% Comments : (eps (complement P)) can only satisfy P if everything satisfies P.
% Hence (^P.P(eps (^x.~Px))) = (^P.!! P).
% : Note that this problem uses !! for forall instead of the !
% quantifier.
% Bugfixes : Added type argument to !!.
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(conj,conjecture,
( ( ^ [P: $i > $o] :
( P
@ ( eps
@ ^ [X: $i] :
~ ( P @ X ) ) ) )
= ( ^ [P: $i > $o] : ( !! @ $i @ P ) ) ) ).
%------------------------------------------------------------------------------