TPTP Problem File: SYO556^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO556^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Relationship between if-then-else and choice on $
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE28 [Bro11]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.46 v8.1.0, 0.45 v7.5.0, 0.43 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v6.0.0, 0.71 v5.5.0, 0.67 v5.4.0, 0.80 v5.2.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 1 def)
% Number of atoms : 5 ( 4 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 16 ( 1 ~; 1 |; 2 &; 11 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-3 aty)
% Number of variables : 9 ( 5 ^; 2 !; 2 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments : A choice operator eps on $i is assumed. if-then-else on $i is
% defined using eps. eps satisfies the following equation:
% eps P = if (P nonempty) (eps P) (eps emptypred)
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(if,type,
if: $o > $i > $i > $i ).
thf(ifd,definition,
( if
= ( ^ [B: $o,X: $i,Y: $i] :
( eps
@ ^ [Z: $i] :
( ( B
& ( Z = X ) )
| ( ~ B
& ( Z = Y ) ) ) ) ) ) ).
thf(conj,conjecture,
! [P: $i > $o] :
( ( eps @ P )
= ( if
@ ? [X: $i] : ( P @ X )
@ ( eps @ P )
@ ( eps
@ ^ [X: $i] : $false ) ) ) ).
%------------------------------------------------------------------------------