TPTP Problem File: SYO555^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO555^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : If-then-else defined from choice is independent of choice
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE27 [Bro11]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.62 v8.1.0, 0.55 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.71 v5.5.0, 0.83 v5.4.0, 0.80 v5.2.0
% Syntax : Number of formulae : 9 ( 3 unt; 4 typ; 2 def)
% Number of atoms : 7 ( 7 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 18 ( 2 ~; 2 |; 4 &; 8 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 0 con; 1-3 aty)
% Number of variables : 12 ( 8 ^; 2 !; 2 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Two choice operators on $i are used to define two if-then-else
% operators at $i. Check that the two if-then-else operators are
% the same.
%------------------------------------------------------------------------------
thf(eps1,type,
eps1: ( $i > $o ) > $i ).
thf(choiceax1,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps1 @ P ) ) ) ).
thf(if1,type,
if1: $o > $i > $i > $i ).
thf(if1d,definition,
( if1
= ( ^ [B: $o,X: $i,Y: $i] :
( eps1
@ ^ [Z: $i] :
( ( B
& ( Z = X ) )
| ( ~ B
& ( Z = Y ) ) ) ) ) ) ).
thf(eps2,type,
eps2: ( $i > $o ) > $i ).
thf(choiceax2,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps2 @ P ) ) ) ).
thf(if2,type,
if2: $o > $i > $i > $i ).
thf(if2d,definition,
( if2
= ( ^ [B: $o,X: $i,Y: $i] :
( eps2
@ ^ [Z: $i] :
( ( B
& ( Z = X ) )
| ( ~ B
& ( Z = Y ) ) ) ) ) ) ).
thf(conj,conjecture,
if1 = if2 ).
%------------------------------------------------------------------------------