TPTP Problem File: SYO547^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO547^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Choice Complement
% Version : Especial.
% English : The choice operator applied to complements of predicates chooses
% an element not in the predicate, if there is one.
% Refs : [Bac10] Backes (2010), Tableaux for Higher-Order Logic with If
% : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE24 [Bro11]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0
% Syntax : Number of formulae : 5 ( 1 unt; 2 typ; 1 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 13 ( 3 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 6 ( 2 ^; 2 !; 2 ?; 6 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(epscomp,type,
epscomp: ( $i > $o ) > $i ).
thf(epscompd,definition,
( epscomp
= ( ^ [P: $i > $o] :
( eps
@ ^ [X: $i] :
~ ( P @ X ) ) ) ) ).
thf(choicecomp,conjecture,
! [P: $i > $o] :
( ? [X: $i] :
~ ( P @ X )
=> ~ ( P @ ( epscomp @ P ) ) ) ).
%------------------------------------------------------------------------------