TPTP Problem File: SYO544^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO544^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Case operator from ($o>$o) to $i defined from choice on $i
% Version : Especial.
% English : A case operator from ($o>$o) (with 4 elements) to $i is defined
% using a choice operator on $i. Check all 4 equations.
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE21 [Bro11]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.69 v8.1.0, 0.82 v7.5.0, 0.57 v7.4.0, 0.78 v7.2.0, 0.75 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.2.0
% Syntax : Number of formulae : 17 ( 9 unt; 6 typ; 1 def)
% Number of atoms : 52 ( 21 equ; 1 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 44 ( 1 ~; 3 |; 7 &; 32 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 6 usr; 3 con; 0-5 aty)
% Number of variables : 15 ( 9 ^; 5 !; 1 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(caseoo,type,
case: ( $o > $o ) > $i > $i > $i > $i > $i ).
thf(caseood,definition,
( case
= ( ^ [B: $o > $o,X: $i,Y: $i,U: $i,V: $i] :
( eps
@ ^ [Z: $i] :
( ( ( B
= ( ^ [A: $o] : $false ) )
& ( Z = X ) )
| ( ( B = (~) )
& ( Z = Y ) )
| ( ( B
= ( ^ [A: $o] : A ) )
& ( Z = U ) )
| ( ( B
= ( ^ [A: $o] : $true ) )
& ( Z = V ) ) ) ) ) ) ).
thf(f0,type,
f0: $o > $o ).
thf(f0f,axiom,
( ( f0 @ $false )
= $false ) ).
thf(f0t,axiom,
( ( f0 @ $true )
= $false ) ).
thf(f1,type,
f1: $o > $o ).
thf(f1f,axiom,
( ( f1 @ $false )
= $true ) ).
thf(f1t,axiom,
( ( f1 @ $true )
= $false ) ).
thf(f2,type,
f2: $o > $o ).
thf(f2f,axiom,
( ( f2 @ $false )
= $false ) ).
thf(f2t,axiom,
( ( f2 @ $true )
= $true ) ).
thf(f3,type,
f3: $o > $o ).
thf(f3f,axiom,
( ( f3 @ $false )
= $true ) ).
thf(f3t,axiom,
( ( f3 @ $true )
= $true ) ).
thf(conj,conjecture,
! [X: $i,Y: $i,U: $i,V: $i] :
( ( ( case @ f0 @ X @ Y @ U @ V )
= X )
& ( ( case @ f1 @ X @ Y @ U @ V )
= Y )
& ( ( case @ f2 @ X @ Y @ U @ V )
= U )
& ( ( case @ f3 @ X @ Y @ U @ V )
= V ) ) ).
%------------------------------------------------------------------------------