TPTP Problem File: SYO543^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO543^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : If-then-else on $i>$i defined from choice on $i>$i
% Version : Especial.
% English : A choice operator on ($i>$i) is used to define an if-then-else
% operator at ($i>$i). Check that if the then-part and else-part
% are both X, then it returns X.
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE16c [Bro11]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 1 def)
% Number of atoms : 4 ( 4 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 12 ( 1 ~; 1 |; 2 &; 7 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 17 ( 17 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 2-4 aty)
% Number of variables : 8 ( 4 ^; 3 !; 1 ?; 8 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(epsii,type,
epsii: ( ( $i > $i ) > $o ) > $i > $i ).
thf(choiceaxii,axiom,
! [P: ( $i > $i ) > $o] :
( ? [X: $i > $i] : ( P @ X )
=> ( P @ ( epsii @ P ) ) ) ).
thf(if,type,
if: $o > ( $i > $i ) > ( $i > $i ) > $i > $i ).
thf(ifd,definition,
( if
= ( ^ [B: $o,X: $i > $i,Y: $i > $i] :
( epsii
@ ^ [Z: $i > $i] :
( ( B
& ( Z = X ) )
| ( ~ B
& ( Z = Y ) ) ) ) ) ) ).
thf(conj,conjecture,
! [B: $o,X: $i > $i] :
( ( if @ B @ X @ X )
= X ) ).
%------------------------------------------------------------------------------