TPTP Problem File: SYO538^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO538^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : If-then-else on $i defined from choice on $i
% Version : Especial.
% English : A choice operator on $i is used to define an if-then-else operator
% at $i. Check that it works.
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE15 [Bro11]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0
% Syntax : Number of formulae : 5 ( 1 unt; 2 typ; 1 def)
% Number of atoms : 7 ( 5 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 16 ( 1 ~; 1 |; 3 &; 10 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 2 usr; 2 con; 0-3 aty)
% Number of variables : 8 ( 4 ^; 3 !; 1 ?; 8 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(if,type,
if: $o > $i > $i > $i ).
thf(ifd,definition,
( if
= ( ^ [B: $o,X: $i,Y: $i] :
( eps
@ ^ [Z: $i] :
( ( B
& ( Z = X ) )
| ( ~ B
& ( Z = Y ) ) ) ) ) ) ).
thf(conj,conjecture,
! [X: $i,Y: $i] :
( ( ( if @ $true @ X @ Y )
= X )
& ( ( if @ $false @ X @ Y )
= Y ) ) ).
%------------------------------------------------------------------------------