TPTP Problem File: SYO531^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO531^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Binary choice on individuals 2
% Version : Especial.
% English : There is an Epsb such that epsa and Epsb work together to give an
% a and b such that R a b holds, if such an a and b exist for a
% binary relation R on $i. A choice operator on i can be used to
% define a choice operator on i*i (Curried). In this version, the
% first half of the solution is given.
% Refs : [Bac10] Backes (2010), Tableaux for Higher-Order Logic with If
% : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE8 [Bro11]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.60 v8.2.0, 0.77 v8.1.0, 0.73 v7.5.0, 0.71 v7.4.0, 0.89 v7.2.0, 0.88 v7.0.0, 0.86 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.71 v5.5.0, 1.00 v5.2.0
% Syntax : Number of formulae : 5 ( 1 unt; 2 typ; 1 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 14 ( 0 ~; 0 |; 0 &; 12 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 9 ( 2 ^; 2 !; 5 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(epsa,type,
epsa: ( $i > $i > $o ) > $i ).
thf(epsad,definition,
( epsa
= ( ^ [R: $i > $i > $o] :
( eps
@ ^ [X: $i] :
? [Y: $i] : ( R @ X @ Y ) ) ) ) ).
thf(conj,conjecture,
? [Epsb: ( $i > $i > $o ) > $i] :
! [R: $i > $i > $o] :
( ? [X: $i,Y: $i] : ( R @ X @ Y )
=> ( R @ ( epsa @ R ) @ ( Epsb @ R ) ) ) ).
%------------------------------------------------------------------------------