TPTP Problem File: SYO527^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO527^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Skolem Property on two types
% Version : Especial.
% English : For every total relation r on a * b, there is a corresponding
% function from a to b.
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE3 [Bro11]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.17 v7.4.0, 0.11 v7.3.0, 0.20 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.50 v6.1.0, 0.17 v5.5.0, 0.20 v5.4.0, 0.25 v5.2.0
% Syntax : Number of formulae : 5 ( 2 unt; 3 typ; 0 def)
% Number of atoms : 2 ( 0 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 5 ( 0 ~; 0 |; 0 &; 5 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 4 ( 0 ^; 2 !; 2 ?; 4 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is similar to SYN996^1 and SYO508^1, but since we use two
% different types there are fewer candidate instantiations. Hence
% this version should be easier to solve.
%------------------------------------------------------------------------------
thf(a,type,
a: $tType ).
thf(b,type,
b: $tType ).
thf(r,type,
r: a > b > $o ).
thf(rtotal,axiom,
! [X: a] :
? [Y: b] : ( r @ X @ Y ) ).
thf(skolem,conjecture,
? [F: a > b] :
! [X: a] : ( r @ X @ ( F @ X ) ) ).
%------------------------------------------------------------------------------