TPTP Problem File: SYO525+1.021.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO525+1.021 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Linear can be exponential
% Version : Especial.
% English :
% Refs : [Bez10] Bezem (2010), Email to Geoff Sutcliffe
% Source : [Bez10]
% Names :
% Status : Theorem
% Rating : 0.00 v7.4.0, 0.33 v7.3.0, 0.75 v7.2.0, 0.67 v7.0.0, 0.75 v6.4.0, 0.67 v6.3.0, 0.75 v6.2.0, 0.67 v6.1.0, 1.00 v5.2.0
% Syntax : Number of formulae : 30 ( 2 unt; 0 def)
% Number of atoms : 58 ( 0 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 28 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 28 =>; 0 <=; 0 <~>)
% Maximal formula depth : 28 ( 14 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 1 prp; 0-27 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 357 ( 357 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : THF0 syntax
%------------------------------------------------------------------------------
fof(start,axiom,
bin_count(n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ).
fof(qed21,axiom,
! [A,B,C,D,E,F] :
( bin_count(A,B,C,D,E,F,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> goal ) ).
fof(p27,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,n0)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,n1) ) ).
fof(p26,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,n0,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,n1,n0) ) ).
fof(p25,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,n0,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,n1,n0,n0) ) ).
fof(p24,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,n0,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,n1,n0,n0,n0) ) ).
fof(p23,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,n0,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,n1,n0,n0,n0,n0) ) ).
fof(p22,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,n0,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,n1,n0,n0,n0,n0,n0) ) ).
fof(p21,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,n0,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,n1,n0,n0,n0,n0,n0,n0) ) ).
fof(p20,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,n0,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,n1,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p19,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,n0,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,n1,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p18,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p17,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p16,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p15,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,N,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p14,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,M,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p13,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,L,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,L,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p12,axiom,
! [A,B,C,D,E,F,G,H,I,J,K] :
( bin_count(A,B,C,D,E,F,G,H,I,J,K,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,K,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p11,axiom,
! [A,B,C,D,E,F,G,H,I,J] :
( bin_count(A,B,C,D,E,F,G,H,I,J,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,J,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p10,axiom,
! [A,B,C,D,E,F,G,H,I] :
( bin_count(A,B,C,D,E,F,G,H,I,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,I,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p9,axiom,
! [A,B,C,D,E,F,G,H] :
( bin_count(A,B,C,D,E,F,G,H,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,H,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p8,axiom,
! [A,B,C,D,E,F,G] :
( bin_count(A,B,C,D,E,F,G,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,G,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p7,axiom,
! [A,B,C,D,E,F] :
( bin_count(A,B,C,D,E,F,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,F,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p6,axiom,
! [A,B,C,D,E] :
( bin_count(A,B,C,D,E,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,E,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p5,axiom,
! [A,B,C,D] :
( bin_count(A,B,C,D,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,D,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p4,axiom,
! [A,B,C] :
( bin_count(A,B,C,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,C,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p3,axiom,
! [A,B] :
( bin_count(A,B,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,B,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p2,axiom,
! [A] :
( bin_count(A,n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(A,n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(p1,axiom,
( bin_count(n0,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1,n1)
=> bin_count(n1,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0,n0) ) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------