TPTP Problem File: SYO522_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO522_1 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Syntactic
% Problem : Functions are either odd or even
% Version : Especial.
% English :
% Refs : [Wal06] Waldmann (2006), Email to Geoff Sutcliffe
% Source : [Wal06]
% Names :
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.75 v7.5.0, 0.80 v7.4.0, 0.62 v7.3.0, 0.50 v7.0.0, 0.57 v6.4.0, 1.00 v6.3.0, 0.43 v6.2.0, 0.88 v6.1.0, 0.89 v6.0.0, 0.86 v5.5.0, 0.89 v5.4.0, 0.88 v5.3.0, 1.00 v5.2.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 2 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 1 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 12 ( 0 atm; 3 fun; 3 num; 6 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 3 ( 1 >; 2 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 1 usr; 2 con; 0-3 aty)
% Number of variables : 6 ( 0 !; 6 ?; 6 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
% Bugfixes : v5.2.0 - Changed $plus to $sum, and $times to $product.
%------------------------------------------------------------------------------
tff(f_type,type,
f: ( $int * $int * $int ) > $int ).
tff(fxxx_is_either_even_or_odd,conjecture,
( ? [X: $int,Y: $int,Z: $int] : ( f(X,X,Y) = $product(2,Z) )
| ? [X: $int,Y: $int,Z: $int] : ( f(X,Y,Y) = $sum($product(2,Z),1) ) ) ).
%------------------------------------------------------------------------------