TPTP Problem File: SYO497^6.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SYO497^6 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Syntactic
% Problem  : Ted Sider's S5 quantified modal logic wff 23
% Version  : Especial.
% English  :

% Refs     : [Sid09] Sider (2009), Logic for Philosophy
% Source   : [Sid09]
% Names    :

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.33 v4.0.0
% Syntax   : Number of formulae    :   73 (  33 unt;  36 typ;  33 def)
%            Number of atoms       :  121 (  38 equ;   0 cnn)
%            Maximal formula atoms :   15 (   3 avg)
%            Number of connectives :  152 (   5   ~;   5   |;   8   &; 126   @)
%                                         (   0 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   1 avg)
%            Number of types       :    3 (   1 usr)
%            Number of type conns  :  180 ( 180   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   44 (  42 usr;   8 con; 0-3 aty)
%            Number of variables   :   91 (  55   ^;  30   !;   6   ?;  91   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : 
%------------------------------------------------------------------------------
%----Include axioms for modal logic S5
include('Axioms/LCL013^0.ax').
include('Axioms/LCL013^6.ax').
%------------------------------------------------------------------------------
thf(f_type,type,
    f: mu > $i > $o ).

thf(prove,conjecture,
    ( mvalid
    @ ( mimplies
      @ ( mand
        @ ( mbox_s5
          @ ( mforall_ind
            @ ^ [X: mu] : ( mimplies @ ( f @ X ) @ ( mbox_s5 @ ( f @ X ) ) ) ) )
        @ ( mdia_s5
          @ ( mexists_ind
            @ ^ [X: mu] : ( f @ X ) ) ) )
      @ ( mbox_s5
        @ ( mexists_ind
          @ ^ [X: mu] : ( f @ X ) ) ) ) ) ).

%------------------------------------------------------------------------------