TPTP Problem File: SYO444^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO444^1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : Ted Sider's modal proposition logic theorem 53
% Version : Especial.
% English :
% Refs : [Sid09] Sider (2009), Logic for Philosophy
% Source : [Sid09]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 74 ( 33 unt; 37 typ; 33 def)
% Number of atoms : 120 ( 38 equ; 0 cnn)
% Maximal formula atoms : 14 ( 3 avg)
% Number of connectives : 147 ( 5 ~; 5 |; 8 &; 121 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 180 ( 180 >; 0 *; 0 +; 0 <<)
% Number of symbols : 44 ( 42 usr; 7 con; 0-3 aty)
% Number of variables : 88 ( 52 ^; 30 !; 6 ?; 88 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S5
include('Axioms/LCL013^0.ax').
include('Axioms/LCL013^6.ax').
%------------------------------------------------------------------------------
thf(p_type,type,
p: $i > $o ).
thf(q_type,type,
q: $i > $o ).
thf(prove,conjecture,
mvalid @ ( mequiv @ ( mbox_s5 @ ( mor @ ( mnot @ p ) @ ( mdia_s5 @ q ) ) ) @ ( mor @ ( mnot @ ( mdia_s5 @ p ) ) @ ( mdia_s5 @ q ) ) ) ).
%------------------------------------------------------------------------------