TPTP Problem File: SYO364^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO364^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem EDEC
% Version : Especial.
% English : Example from [Ben99] about decomposition (using Leibniz equality).
% Refs : [Ben99] Benzmueller (1999), Equality and Extensionality in Hig
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0575 [Bro09]
% : EDEC [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.25 v7.4.0, 0.22 v7.3.0, 0.30 v7.2.0, 0.38 v7.1.0, 0.29 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v5.5.0, 0.80 v5.4.0, 0.75 v5.0.0, 0.50 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 19 ( 0 ~; 0 |; 1 &; 14 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 6 ( 0 ^; 6 !; 0 ?; 6 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(j,type,
j: a > a ).
thf(g,type,
g: ( a > a ) > a > a ).
thf(h,type,
h: a > a ).
thf(f,type,
f: ( a > a ) > a > a ).
thf(cEDEC_pme,conjecture,
( ( ! [X: a > a,Y: a,Xq: a > $o] :
( ( Xq @ ( f @ X @ Y ) )
=> ( Xq @ ( g @ X @ Y ) ) )
& ! [Z: a,Xq: a > $o] :
( ( Xq @ ( h @ Z ) )
=> ( Xq @ ( j @ Z ) ) ) )
=> ! [Xq: ( a > a ) > $o] :
( ( Xq @ ( f @ h ) )
=> ( Xq @ ( g @ j ) ) ) ) ).
%------------------------------------------------------------------------------