TPTP Problem File: SYO338^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO338^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-HO-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1154 [Bro09]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.83 v8.2.0, 0.91 v8.1.0, 0.92 v7.5.0, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 89 ( 10 ~; 17 |; 6 &; 56 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 13 ( 0 ^; 4 !; 9 ?; 13 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cT145_DOUBLE,conjecture,
! [R: a > a > $o,U: ( a > $o ) > a] :
( ? [X: a,Y: a,Z: a] :
( ( ( R @ X @ Y )
| ( R @ X @ Y ) )
& ( ( R @ Y @ Z )
| ( R @ Y @ Z ) )
& ( ~ ( R @ X @ Z )
| ~ ( R @ X @ Z ) ) )
| ? [Xs: a > $o] :
( ? [Xz: a] :
( ( ( Xs @ Xz )
| ( Xs @ Xz ) )
& ( ~ ( R @ Xz @ ( U @ Xs ) )
| ~ ( R @ Xz @ ( U @ Xs ) ) ) )
| ? [Xj: a] :
( ! [Xk: a] :
( ~ ( Xs @ Xk )
| ~ ( Xs @ Xk )
| ( R @ Xk @ Xj )
| ( R @ Xk @ Xj ) )
& ( ~ ( R @ ( U @ Xs ) @ Xj )
| ~ ( R @ ( U @ Xs ) @ Xj ) ) ) )
| ! [Xf: a > a] :
( ? [Xx: a,Xy: a] :
( ( ( R @ Xx @ Xy )
| ( R @ Xx @ Xy ) )
& ( ~ ( R @ ( Xf @ Xx ) @ ( Xf @ Xy ) )
| ~ ( R @ ( Xf @ Xx ) @ ( Xf @ Xy ) ) ) )
| ? [Xw: a] :
( ( ( R @ Xw @ ( Xf @ Xw ) )
| ( R @ Xw @ ( Xf @ Xw ) ) )
& ( ( R @ ( Xf @ Xw ) @ Xw )
| ( R @ ( Xf @ Xw ) @ Xw ) ) ) ) ) ).
%------------------------------------------------------------------------------