TPTP Problem File: SYO332^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO332^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-HO-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1056 [Bro09]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.83 v8.2.0, 0.82 v8.1.0, 0.83 v7.5.0, 0.92 v7.4.0, 0.89 v7.3.0, 0.80 v7.2.0, 0.75 v7.1.0, 0.71 v7.0.0, 0.75 v6.4.0, 0.71 v6.3.0, 0.67 v5.5.0, 0.80 v5.4.0, 0.50 v5.3.0, 0.75 v5.2.0, 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 31 ( 0 ~; 0 |; 1 &; 20 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 21 ( 21 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 18 ( 0 ^; 10 !; 8 ?; 18 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(cTHM561,conjecture,
( ( ! [Xs: ( b > $o ) > $o] :
( ! [X: b > $o] :
( ( Xs @ X )
=> ? [Xy: b] : ( X @ Xy ) )
=> ? [Xf: ( b > $o ) > b] :
! [X: b > $o] :
( ( Xs @ X )
=> ( X @ ( Xf @ X ) ) ) )
=> ! [Xr: a > b > $o] :
? [Xg: a > b] :
! [Xx: a] :
( ? [Xy: b] : ( Xr @ Xx @ Xy )
=> ( Xr @ Xx @ ( Xg @ Xx ) ) ) )
& ( ! [Xr: ( a > $o ) > a > $o] :
? [Xg: ( a > $o ) > a] :
! [Xx: a > $o] :
( ? [Xy: a] : ( Xr @ Xx @ Xy )
=> ( Xr @ Xx @ ( Xg @ Xx ) ) )
=> ! [Xs: ( a > $o ) > $o] :
( ! [X: a > $o] :
( ( Xs @ X )
=> ? [Xt: a] : ( X @ Xt ) )
=> ? [Xf: ( a > $o ) > a] :
! [X: a > $o] :
( ( Xs @ X )
=> ( X @ ( Xf @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------