TPTP Problem File: SYO269^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO269^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem THM112D
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0277 [Bro09]
% : THM112C [TPS]
% : THM112D [TPS]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.58 v8.2.0, 0.64 v8.1.0, 0.67 v7.5.0, 0.75 v7.4.0, 0.67 v7.3.0, 0.70 v7.2.0, 0.62 v7.1.0, 0.57 v7.0.0, 0.62 v6.4.0, 0.57 v6.3.0, 0.83 v6.1.0, 0.67 v5.5.0, 0.80 v5.4.0, 0.75 v5.2.0, 0.50 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 38 ( 0 ~; 5 |; 4 &; 27 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 16 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 15 ( 4 ^; 9 !; 2 ?; 15 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cTHM112D,conjecture,
! [P: $i > $o] :
? [Xm_9: ( $i > $i ) > $i > $o,Xm_10: ( $i > $i ) > $i > $o] :
( ! [Xw_1: $i] :
( ( Xm_9
@ ^ [Xx: $i] : Xx
@ Xw_1 )
| ( Xm_10
@ ^ [Xx: $i] : Xx
@ Xw_1 ) )
& ! [G: $i > $i,H: $i > $i] :
( ( ! [Xw_1: $i] :
( ( Xm_9 @ G @ Xw_1 )
| ( Xm_10 @ G @ Xw_1 ) )
& ! [Xw_1: $i] :
( ( Xm_9 @ G @ Xw_1 )
| ( Xm_10 @ G @ Xw_1 ) )
& ! [Xw_1: $i] :
( ( Xm_9 @ H @ Xw_1 )
| ( Xm_10 @ H @ Xw_1 ) ) )
=> ( ! [Xw_1: $i] :
( ( Xm_9
@ ^ [Xx: $i] : ( G @ ( H @ Xx ) )
@ Xw_1 )
| ( Xm_10
@ ^ [Xx: $i] : ( G @ ( H @ Xx ) )
@ Xw_1 ) )
& ! [Y: $i] :
( ( P @ Y )
=> ( P @ ( G @ Y ) ) ) ) ) ) ).
%------------------------------------------------------------------------------