TPTP Problem File: SYO246^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO246^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-HO-EQ-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1022 [Bro09]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.60 v8.2.0, 0.62 v8.1.0, 0.55 v7.5.0, 0.71 v7.4.0, 0.78 v7.2.0, 0.75 v7.0.0, 0.71 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 1.00 v6.1.0, 0.86 v5.5.0, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 27 ( 0 ~; 0 |; 3 &; 16 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 9 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 29 ( 29 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 15 ( 2 ^; 7 !; 6 ?; 15 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM535,conjecture,
( ! [Xs: ( ( a > $o ) > $o ) > $o] :
( ! [X: ( a > $o ) > $o] :
( ( Xs @ X )
=> ? [Xt: a > $o] : ( X @ Xt ) )
=> ? [Xf: ( ( a > $o ) > $o ) > a > $o] :
! [X: ( a > $o ) > $o] :
( ( Xs @ X )
=> ( X @ ( Xf @ X ) ) ) )
=> ! [A: ( ( a > $o ) > $o ) > $o] :
( ( ? [X: ( a > $o ) > $o] : ( A @ X )
& ! [X: ( a > $o ) > $o] :
( ( A @ X )
=> ? [Xu: a > $o] : ( X @ Xu ) ) )
=> ( ( ^ [Xx: a] :
! [Xa: ( a > $o ) > $o] :
( ( A @ Xa )
=> ? [Xb: a > $o] :
( ( Xa @ Xb )
& ( Xb @ Xx ) ) ) )
= ( ^ [Xx: a] :
? [Xf: ( ( a > $o ) > $o ) > a > $o] :
! [Xa: ( a > $o ) > $o] :
( ( A @ Xa )
=> ( ( Xa @ ( Xf @ Xa ) )
& ( Xf @ Xa @ Xx ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------