TPTP Problem File: SYO179^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO179^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-FO-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1173 [Bro09]
% Status : Theorem
% Rating : 0.25 v8.2.0, 0.27 v8.1.0, 0.25 v7.4.0, 0.33 v7.3.0, 0.30 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v6.0.0, 0.33 v5.5.0, 0.20 v5.4.0, 0.25 v5.2.0, 0.50 v5.1.0, 0.75 v5.0.0, 0.25 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 9 ( 0 unt; 8 typ; 0 def)
% Number of atoms : 36 ( 0 equ; 0 cnn)
% Maximal formula atoms : 36 ( 36 avg)
% Number of connectives : 107 ( 0 ~; 16 |; 18 &; 72 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 8 usr; 6 con; 0-2 aty)
% Number of variables : 6 ( 0 ^; 0 !; 6 ?; 6 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cG,type,
cG: $i > $i > $o ).
thf(cR,type,
cR: $i > $i > $o ).
thf(cF,type,
cF: $i ).
thf(cE,type,
cE: $i ).
thf(cD,type,
cD: $i ).
thf(cC,type,
cC: $i ).
thf(cB,type,
cB: $i ).
thf(cA,type,
cA: $i ).
thf(cSIX_THEOREM_B,conjecture,
( ( ( ( cR @ cA @ cB )
| ( cG @ cA @ cB ) )
& ( ( cR @ cA @ cC )
| ( cG @ cA @ cC ) )
& ( ( cR @ cA @ cD )
| ( cG @ cA @ cD ) )
& ( ( cR @ cA @ cE )
| ( cG @ cA @ cE ) )
& ( ( cR @ cA @ cF )
| ( cG @ cA @ cF ) )
& ( ( cR @ cB @ cC )
| ( cG @ cB @ cC ) )
& ( ( cR @ cB @ cD )
| ( cG @ cB @ cD ) )
& ( ( cR @ cB @ cE )
| ( cG @ cB @ cE ) )
& ( ( cR @ cB @ cF )
| ( cG @ cB @ cF ) )
& ( ( cR @ cC @ cD )
| ( cG @ cC @ cD ) )
& ( ( cR @ cC @ cE )
| ( cG @ cC @ cE ) )
& ( ( cR @ cC @ cF )
| ( cG @ cC @ cF ) )
& ( ( cR @ cD @ cE )
| ( cG @ cD @ cE ) )
& ( ( cR @ cD @ cF )
| ( cG @ cD @ cF ) )
& ( ( cR @ cE @ cF )
| ( cG @ cE @ cF ) ) )
=> ( ? [Xa: $i,Xb: $i,Xc: $i] :
( ( cR @ Xa @ Xb )
& ( cR @ Xa @ Xc )
& ( cR @ Xb @ Xc ) )
| ? [Xa: $i,Xb: $i,Xc: $i] :
( ( cG @ Xa @ Xb )
& ( cG @ Xa @ Xc )
& ( cG @ Xb @ Xc ) ) ) ) ).
%------------------------------------------------------------------------------