TPTP Problem File: SYO069^4.002.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO069^4.002 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ205+1.002
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ205+1.002 [ROK06]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.69 v8.1.0, 0.73 v7.5.0, 0.86 v7.4.0, 0.78 v7.3.0, 0.89 v7.2.0, 0.88 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 1.00 v6.1.0, 0.86 v6.0.0, 0.57 v5.5.0, 0.67 v5.4.0, 1.00 v5.2.0, 0.80 v5.0.0, 0.60 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 49 ( 20 unt; 27 typ; 19 def)
% Number of atoms : 135 ( 19 equ; 0 cnn)
% Maximal formula atoms : 72 ( 6 avg)
% Number of connectives : 126 ( 3 ~; 1 |; 2 &; 118 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 102 ( 102 >; 0 *; 0 +; 0 <<)
% Number of symbols : 33 ( 31 usr; 5 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(a0_type,type,
a0: $i > $o ).
thf(a1_type,type,
a1: $i > $o ).
thf(a2_type,type,
a2: $i > $o ).
thf(b0_type,type,
b0: $i > $o ).
thf(b1_type,type,
b1: $i > $o ).
thf(b2_type,type,
b2: $i > $o ).
thf(f_type,type,
f: $i > $o ).
thf(con,conjecture,
ivalid @ ( iand @ ( iimplies @ ( iand @ ( iimplies @ ( iatom @ a0 ) @ ( iatom @ f ) ) @ ( iand @ ( iimplies @ ( iimplies @ ( iatom @ b2 ) @ ( iatom @ b0 ) ) @ ( iatom @ a2 ) ) @ ( iand @ ( iimplies @ ( iimplies @ ( iatom @ b0 ) @ ( iatom @ a1 ) ) @ ( iatom @ a0 ) ) @ ( iimplies @ ( iimplies @ ( iatom @ b1 ) @ ( iatom @ a2 ) ) @ ( iatom @ a1 ) ) ) ) ) @ ( iatom @ f ) ) @ ( iimplies @ ( iand @ ( iimplies @ ( iimplies @ ( iatom @ b1 ) @ ( iatom @ a2 ) ) @ ( iatom @ a1 ) ) @ ( iand @ ( iimplies @ ( iimplies @ ( iatom @ b0 ) @ ( iatom @ a1 ) ) @ ( iatom @ a0 ) ) @ ( iand @ ( iimplies @ ( iimplies @ ( iatom @ b2 ) @ ( iatom @ b0 ) ) @ ( iatom @ a2 ) ) @ ( iimplies @ ( iatom @ a0 ) @ ( iatom @ f ) ) ) ) ) @ ( iatom @ f ) ) ) ).
%------------------------------------------------------------------------------