TPTP Problem File: SYO068^4.010.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO068^4.010 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ204+1.010
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ204+1.010 [ROK06]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.40 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 64 ( 20 unt; 31 typ; 19 def)
% Number of atoms : 159 ( 19 equ; 0 cnn)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 139 ( 3 ~; 1 |; 2 &; 131 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 106 ( 106 >; 0 *; 0 +; 0 <<)
% Number of symbols : 36 ( 34 usr; 4 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(p0_type,type,
p0: $i > $o ).
thf(p1_type,type,
p1: $i > $o ).
thf(p10_type,type,
p10: $i > $o ).
thf(p2_type,type,
p2: $i > $o ).
thf(p3_type,type,
p3: $i > $o ).
thf(p4_type,type,
p4: $i > $o ).
thf(p5_type,type,
p5: $i > $o ).
thf(p6_type,type,
p6: $i > $o ).
thf(p7_type,type,
p7: $i > $o ).
thf(p8_type,type,
p8: $i > $o ).
thf(p9_type,type,
p9: $i > $o ).
thf(axiom1,axiom,
ivalid @ ( iatom @ p10 ) ).
thf(axiom2,axiom,
ivalid @ ( iimplies @ ( iatom @ p1 ) @ ( iimplies @ ( iatom @ p1 ) @ ( iatom @ p0 ) ) ) ).
thf(axiom3,axiom,
ivalid @ ( iimplies @ ( iatom @ p2 ) @ ( iimplies @ ( iatom @ p2 ) @ ( iatom @ p1 ) ) ) ).
thf(axiom4,axiom,
ivalid @ ( iimplies @ ( iatom @ p3 ) @ ( iimplies @ ( iatom @ p3 ) @ ( iatom @ p2 ) ) ) ).
thf(axiom5,axiom,
ivalid @ ( iimplies @ ( iatom @ p4 ) @ ( iimplies @ ( iatom @ p4 ) @ ( iatom @ p3 ) ) ) ).
thf(axiom6,axiom,
ivalid @ ( iimplies @ ( iatom @ p5 ) @ ( iimplies @ ( iatom @ p5 ) @ ( iatom @ p4 ) ) ) ).
thf(axiom7,axiom,
ivalid @ ( iimplies @ ( iatom @ p6 ) @ ( iimplies @ ( iatom @ p6 ) @ ( iatom @ p5 ) ) ) ).
thf(axiom8,axiom,
ivalid @ ( iimplies @ ( iatom @ p7 ) @ ( iimplies @ ( iatom @ p7 ) @ ( iatom @ p6 ) ) ) ).
thf(axiom9,axiom,
ivalid @ ( iimplies @ ( iatom @ p8 ) @ ( iimplies @ ( iatom @ p8 ) @ ( iatom @ p7 ) ) ) ).
thf(axiom10,axiom,
ivalid @ ( iimplies @ ( iatom @ p9 ) @ ( iimplies @ ( iatom @ p9 ) @ ( iatom @ p8 ) ) ) ).
thf(axiom11,axiom,
ivalid @ ( iimplies @ ( iatom @ p10 ) @ ( iimplies @ ( iatom @ p10 ) @ ( iatom @ p9 ) ) ) ).
thf(con,conjecture,
ivalid @ ( iatom @ p0 ) ).
%------------------------------------------------------------------------------