TPTP Problem File: SYO066^4.003.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO066^4.003 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ202+1.003
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ202+1.003 [ROK06]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0, 0.73 v7.5.0, 0.71 v7.4.0, 0.78 v7.3.0, 0.89 v7.2.0, 0.88 v7.0.0, 1.00 v6.3.0, 0.80 v6.2.0, 0.86 v6.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 58 ( 20 unt; 32 typ; 19 def)
% Number of atoms : 207 ( 19 equ; 0 cnn)
% Maximal formula atoms : 108 ( 7 avg)
% Number of connectives : 194 ( 3 ~; 1 |; 2 &; 186 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 107 ( 107 >; 0 *; 0 +; 0 <<)
% Number of symbols : 38 ( 36 usr; 5 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(o11_type,type,
o11: $i > $o ).
thf(o12_type,type,
o12: $i > $o ).
thf(o13_type,type,
o13: $i > $o ).
thf(o21_type,type,
o21: $i > $o ).
thf(o22_type,type,
o22: $i > $o ).
thf(o23_type,type,
o23: $i > $o ).
thf(o31_type,type,
o31: $i > $o ).
thf(o32_type,type,
o32: $i > $o ).
thf(o33_type,type,
o33: $i > $o ).
thf(o41_type,type,
o41: $i > $o ).
thf(o42_type,type,
o42: $i > $o ).
thf(o43_type,type,
o43: $i > $o ).
thf(axiom1,axiom,
ivalid @ ( ior @ ( iatom @ o11 ) @ ( ior @ ( iatom @ o12 ) @ ( iatom @ o13 ) ) ) ).
thf(axiom2,axiom,
ivalid @ ( ior @ ( iatom @ o21 ) @ ( ior @ ( iatom @ o22 ) @ ( iatom @ o23 ) ) ) ).
thf(axiom3,axiom,
ivalid @ ( ior @ ( iatom @ o31 ) @ ( ior @ ( iatom @ o32 ) @ ( iatom @ o33 ) ) ) ).
thf(axiom4,axiom,
ivalid @ ( ior @ ( iatom @ o41 ) @ ( ior @ ( iatom @ o42 ) @ ( iatom @ o43 ) ) ) ).
thf(con,conjecture,
ivalid @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o21 ) ) @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o31 ) ) @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o41 ) ) @ ( ior @ ( iand @ ( iatom @ o21 ) @ ( iatom @ o31 ) ) @ ( ior @ ( iand @ ( iatom @ o21 ) @ ( iatom @ o41 ) ) @ ( ior @ ( iand @ ( iatom @ o31 ) @ ( iatom @ o41 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o22 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o32 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o42 ) ) @ ( ior @ ( iand @ ( iatom @ o22 ) @ ( iatom @ o32 ) ) @ ( ior @ ( iand @ ( iatom @ o22 ) @ ( iatom @ o42 ) ) @ ( ior @ ( iand @ ( iatom @ o32 ) @ ( iatom @ o42 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o23 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o33 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o43 ) ) @ ( ior @ ( iand @ ( iatom @ o23 ) @ ( iatom @ o33 ) ) @ ( ior @ ( iand @ ( iatom @ o23 ) @ ( iatom @ o43 ) ) @ ( iand @ ( iatom @ o33 ) @ ( iatom @ o43 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------