TPTP Problem File: SYO063^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO063^4 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ106+1
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ106+1 [ROK06]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.69 v8.1.0, 0.73 v7.5.0, 0.57 v7.4.0, 0.67 v7.2.0, 0.62 v7.1.0, 0.75 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.2.0, 1.00 v4.0.0
% Syntax : Number of formulae : 49 ( 20 unt; 25 typ; 19 def)
% Number of atoms : 100 ( 19 equ; 0 cnn)
% Maximal formula atoms : 24 ( 4 avg)
% Number of connectives : 89 ( 3 ~; 1 |; 2 &; 81 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 100 ( 100 >; 0 *; 0 +; 0 <<)
% Number of symbols : 32 ( 30 usr; 6 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(p_type,type,
p: $i > $o ).
thf(q_type,type,
q: $i > $o ).
thf(r_type,type,
r: $i > $o ).
thf(s_type,type,
s: $i > $o ).
thf(t_type,type,
t: $i > $o ).
thf(axiom1,axiom,
ivalid @ ( iatom @ s ) ).
thf(axiom2,axiom,
ivalid @ ( iimplies @ ( inot @ ( iimplies @ ( iatom @ t ) @ ( iatom @ r ) ) ) @ ( iatom @ p ) ) ).
thf(con,conjecture,
ivalid @ ( iimplies @ ( inot @ ( iand @ ( iimplies @ ( iatom @ p ) @ ( iatom @ q ) ) @ ( iimplies @ ( iatom @ t ) @ ( iatom @ r ) ) ) ) @ ( iand @ ( inot @ ( inot @ ( iatom @ p ) ) ) @ ( iand @ ( iatom @ s ) @ ( iatom @ s ) ) ) ) ).
%------------------------------------------------------------------------------