TPTP Problem File: SYO052^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO052^2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Quantified multimodal logic)
% Problem : Simple textbook example 9
% Version : [Ben09] axioms.
% : Theorem formulation : Accessibility relation not valid
% English :
% Refs : [Gol92] Goldblatt (1992), Logics of Time and Computation
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : ex9a.p [Ben09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0, 0.40 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 67 ( 31 unt; 35 typ; 31 def)
% Number of atoms : 101 ( 36 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 139 ( 5 ~; 4 |; 8 &; 114 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 176 ( 176 >; 0 *; 0 +; 0 <<)
% Number of symbols : 41 ( 39 usr; 6 con; 0-3 aty)
% Number of variables : 87 ( 51 ^; 29 !; 7 ?; 87 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include embedding of quantified multimodal logic in simple type theory
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
thf(r,type,
r: $i > $i > $o ).
%---- provide a consant for propositions A and B (they could
%---- alternatively become universal variables in conjecture
thf(a,type,
a: $i > $o ).
thf(b,type,
b: $i > $o ).
%---- conjecture statement
thf(conj,conjecture,
? [R: $i > $i > $o] :
~ ( mvalid
@ ( mforall_prop
@ ^ [A: $i > $o] :
( mforall_prop
@ ^ [B: $i > $o] : ( mimplies @ ( mbox @ R @ ( mimplies @ A @ B ) ) @ ( mimplies @ ( mbox @ R @ A ) @ ( mdia @ R @ B ) ) ) ) ) ) ).
%------------------------------------------------------------------------------