TPTP Problem File: SYO035^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO035^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Syntactic
% Problem : Higher-order unification does not always provide projection terms
% Version : Especial.
% English :
% Refs : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : Example 30 [BB05]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 2 def)
% Number of atoms : 8 ( 4 equ; 0 cnn)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 10 ( 6 ^; 4 !; 0 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Requires set comprehension, and set instantiation
%------------------------------------------------------------------------------
thf(leibeq1_type,type,
leibeq1: $i > $i > $o ).
thf(leibeq1,definition,
( leibeq1
= ( ^ [X: $i,Y: $i] :
! [P: $i > $o] :
( ( P @ X )
=> ( P @ Y ) ) ) ) ).
thf(leibeq2_type,type,
leibeq2: ( $i > $o ) > ( $i > $o ) > $o ).
thf(leibeq2,definition,
( leibeq2
= ( ^ [X: $i > $o,Y: $i > $o] :
! [P: ( $i > $o ) > $o] :
( ( P @ X )
=> ( P @ Y ) ) ) ) ).
thf(conj,conjecture,
! [X: $i,Y: $i] :
( ( leibeq2
@ ^ [Z: $i] : ( Z = X )
@ ^ [Z: $i] : ( Z = Y ) )
=> ( leibeq1 @ X @ Y ) ) ).
%------------------------------------------------------------------------------