TPTP Problem File: SYO016^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO016^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Syntactic
% Problem : Formula valid in MBb, but not in model classes not requiring b
% Version : Especial.
% English :
% Refs : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : Example 18a [BB05]
% Status : Theorem
% : Without Boolean extensionality : CounterSatisfiable
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.60 v5.1.0, 0.80 v4.1.0, 1.00 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 4 ( 1 unt; 2 typ; 1 def)
% Number of atoms : 11 ( 1 equ; 0 cnn)
% Maximal formula atoms : 9 ( 5 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 0 &; 10 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 2 usr; 2 con; 0-2 aty)
% Number of variables : 3 ( 2 ^; 1 !; 0 ?; 3 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(leibeq_decl,type,
leibeq: $o > $o > $o ).
thf(leibeq,definition,
( leibeq
= ( ^ [X: $o,Y: $o] :
! [P: $o > $o] :
( ( P @ X )
=> ( P @ Y ) ) ) ) ).
thf(h,type,
h: $o > $o ).
thf(conj,conjecture,
leibeq @ ( h @ ( leibeq @ ( h @ $true ) @ ( h @ $false ) ) ) @ ( h @ $false ) ).
%------------------------------------------------------------------------------