TPTP Problem File: SYO006^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO006^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Syntactic
% Problem : The trivial direction of Boolean extensionality
% Version : Especial.
% English :
% Refs : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : Example 9b [BB05]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 3 ( 2 unt; 1 typ; 1 def)
% Number of atoms : 3 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 0 &; 4 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 5 ( 2 ^; 3 !; 0 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(leibeq1_type,type,
leibeq: $o > $o > $o ).
thf(leibeq1,definition,
( leibeq
= ( ^ [U: $o,V: $o] :
! [Q: $o > $o] :
( ( Q @ U )
=> ( Q @ V ) ) ) ) ).
thf(conj,conjecture,
! [A: $o,B: $o] :
( ( leibeq @ A @ B )
=> ( A
<=> B ) ) ).
%------------------------------------------------------------------------------