TPTP Problem File: SYO004^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO004^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Syntactic
% Problem : Relating Leibniz equality to primitive equality
% Version : Especial.
% English :
% Refs : [And72] Andrews (1972), General Models and Extensionality
% : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : Example 8 [BB05]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 3 ( 1 unt; 1 typ; 1 def)
% Number of atoms : 4 ( 2 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 0 &; 4 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 5 ( 2 ^; 3 !; 0 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Andrews property q is required
%------------------------------------------------------------------------------
thf(leibeq_decl,type,
leibeq: $i > $i > $o ).
thf(leibeq,definition,
( leibeq
= ( ^ [X: $i,Y: $i] :
! [P: $i > $o] :
( ( P @ X )
=> ( P @ Y ) ) ) ) ).
thf(conj,conjecture,
! [X: $i,Y: $i] :
( ( leibeq @ X @ Y )
=> ( X = Y ) ) ).
%------------------------------------------------------------------------------