TPTP Problem File: SYN992^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN992^1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Syntactic
% Problem : There exists a reflexive relation
% Version : Especial.
% English :
% Refs : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 3 ( 2 unt; 1 typ; 1 def)
% Number of atoms : 3 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &; 3 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 1 usr; 0 con; 1-2 aty)
% Number of variables : 3 ( 1 ^; 1 !; 1 ?; 3 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Set instantiation required
% :
% Bugfixes : v4.0.0 - Fixed conjecture.
%------------------------------------------------------------------------------
thf(refl_type,type,
refl: ( $i > $i > $o ) > $o ).
thf(refl,definition,
( refl
= ( ^ [R: $i > $i > $o] :
! [X: $i] : ( R @ X @ X ) ) ) ).
thf(ax,conjecture,
? [R: $i > $i > $o] : ( refl @ R ) ).
%------------------------------------------------------------------------------