TPTP Problem File: SYN563-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN563-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Harrison problem 2755
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.32 v8.2.0, 0.29 v8.1.0, 0.15 v7.5.0
% Syntax : Number of clauses : 20 ( 20 unt; 0 nHn; 4 RR)
% Number of literals : 20 ( 20 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 5 con; 0-4 aty)
% Number of variables : 37 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from SYN563-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(p2_1,negated_conjecture,
p2(X0,X0) = true ).
cnf(p6_2,negated_conjecture,
p6(X22,X22) = true ).
cnf(p2_4,negated_conjecture,
p2(f4(c7),f4(c8)) = true ).
cnf(p6_6,negated_conjecture,
ifeq2(p5(X20,X21),true,p6(X20,X21),true) = true ).
cnf(p5_7,negated_conjecture,
p5(f3(f3(X16)),f3(f4(X16))) = true ).
cnf(p5_8,negated_conjecture,
ifeq2(p6(f4(X10),X11),true,p5(X10,X11),true) = true ).
cnf(p6_9,negated_conjecture,
ifeq2(p6(c7,X27),true,p6(c7,f3(X27)),true) = true ).
cnf(p6_10,negated_conjecture,
ifeq2(p5(X10,X11),true,p6(f4(X10),X11),true) = true ).
cnf(p2_11,negated_conjecture,
ifeq2(p2(X3,X4),true,p2(f3(X3),f3(X4)),true) = true ).
cnf(p2_12,negated_conjecture,
ifeq2(p2(X5,X6),true,p2(f4(X5),f4(X6)),true) = true ).
cnf(p2_13,negated_conjecture,
ifeq2(p2(X0,X2),true,ifeq2(p2(X0,X1),true,p2(X1,X2),true),true) = true ).
cnf(p6_14,negated_conjecture,
ifeq2(p6(X19,X18),true,ifeq2(p6(X17,X19),true,p6(X17,X18),true),true) = true ).
cnf(p5_15,negated_conjecture,
ifeq2(p6(X7,X9),true,ifeq2(p5(X9,X8),true,p5(X7,X8),true),true) = true ).
cnf(p6_16,negated_conjecture,
ifeq2(p2(X25,X24),true,ifeq2(p2(X26,X23),true,ifeq2(p6(X26,X25),true,p6(X23,X24),true),true),true) = true ).
cnf(p5_17,negated_conjecture,
ifeq2(p2(X14,X12),true,ifeq2(p2(X15,X13),true,ifeq2(p5(X14,X15),true,p5(X12,X13),true),true),true) = true ).
cnf(not_p6_3,negated_conjecture,
ifeq(p6(f4(c7),c8),true,a,b) = b ).
cnf(not_p6_5,negated_conjecture,
ifeq(p6(f4(c7),f3(f4(c8))),true,a,b) = b ).
cnf(goal,negated_conjecture,
a != b ).
%------------------------------------------------------------------------------