TPTP Problem File: SYN457+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN457+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=060
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-60-3-1-060.dfg [Wei97]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.67 v8.1.0, 0.00 v6.1.0, 0.33 v6.0.0, 0.00 v5.5.0, 0.44 v5.3.0, 0.55 v5.2.0, 0.50 v4.1.0, 0.61 v4.0.1, 0.63 v4.0.0, 0.65 v3.7.0, 0.67 v3.5.0, 0.50 v3.4.0, 0.58 v3.3.0, 0.56 v3.2.0, 0.67 v2.7.0, 0.33 v2.5.0, 0.67 v2.4.0, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 827 ( 0 equ)
% Maximal formula atoms : 827 ( 827 avg)
% Number of connectives : 1167 ( 341 ~; 374 |; 363 &)
% ( 0 <=>; 89 =>; 0 <=; 0 <~>)
% Maximal formula depth : 144 ( 144 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 81 ( 81 usr; 77 prp; 0-1 aty)
% Number of functors : 76 ( 76 usr; 76 con; 0-0 aty)
% Number of variables : 89 ( 89 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c1_1(a1637)
& c0_1(a1637)
& ~ c2_1(a1637) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c1_1(a1643)
& c3_1(a1643)
& ~ c2_1(a1643) ) )
& ( ~ hskp2
| ( ndr1_0
& ~ c1_1(a1645)
& ~ c0_1(a1645)
& ~ c3_1(a1645) ) )
& ( ~ hskp3
| ( ndr1_0
& c0_1(a1646)
& ~ c1_1(a1646)
& ~ c2_1(a1646) ) )
& ( ~ hskp4
| ( ndr1_0
& c1_1(a1647)
& ~ c0_1(a1647)
& ~ c2_1(a1647) ) )
& ( ~ hskp5
| ( ndr1_0
& c3_1(a1648)
& ~ c1_1(a1648)
& ~ c0_1(a1648) ) )
& ( ~ hskp6
| ( ndr1_0
& ~ c1_1(a1650)
& ~ c2_1(a1650)
& ~ c3_1(a1650) ) )
& ( ~ hskp7
| ( ndr1_0
& c3_1(a1655)
& c0_1(a1655)
& ~ c2_1(a1655) ) )
& ( ~ hskp8
| ( ndr1_0
& c2_1(a1657)
& ~ c1_1(a1657)
& ~ c0_1(a1657) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c3_1(a1660)
& ~ c0_1(a1660)
& ~ c1_1(a1660) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c2_1(a1663)
& ~ c3_1(a1663)
& ~ c0_1(a1663) ) )
& ( ~ hskp11
| ( ndr1_0
& ~ c3_1(a1664)
& ~ c2_1(a1664)
& ~ c1_1(a1664) ) )
& ( ~ hskp12
| ( ndr1_0
& c2_1(a1666)
& c3_1(a1666)
& ~ c1_1(a1666) ) )
& ( ~ hskp13
| ( ndr1_0
& c0_1(a1667)
& c3_1(a1667)
& ~ c1_1(a1667) ) )
& ( ~ hskp14
| ( ndr1_0
& c2_1(a1671)
& ~ c1_1(a1671)
& ~ c3_1(a1671) ) )
& ( ~ hskp15
| ( ndr1_0
& c3_1(a1672)
& c1_1(a1672)
& ~ c0_1(a1672) ) )
& ( ~ hskp16
| ( ndr1_0
& ~ c0_1(a1677)
& ~ c2_1(a1677)
& ~ c1_1(a1677) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c0_1(a1678)
& ~ c1_1(a1678)
& ~ c2_1(a1678) ) )
& ( ~ hskp18
| ( ndr1_0
& ~ c3_1(a1680)
& ~ c1_1(a1680)
& ~ c0_1(a1680) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c1_1(a1681)
& ~ c3_1(a1681)
& ~ c2_1(a1681) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c2_1(a1682)
& ~ c1_1(a1682)
& ~ c3_1(a1682) ) )
& ( ~ hskp21
| ( ndr1_0
& c3_1(a1683)
& c2_1(a1683)
& ~ c1_1(a1683) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c0_1(a1684)
& c2_1(a1684)
& ~ c3_1(a1684) ) )
& ( ~ hskp23
| ( ndr1_0
& ~ c0_1(a1685)
& c2_1(a1685)
& ~ c1_1(a1685) ) )
& ( ~ hskp24
| ( ndr1_0
& ~ c0_1(a1689)
& c3_1(a1689)
& ~ c1_1(a1689) ) )
& ( ~ hskp25
| ( ndr1_0
& c2_1(a1690)
& ~ c0_1(a1690)
& ~ c1_1(a1690) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c3_1(a1691)
& ~ c1_1(a1691)
& ~ c2_1(a1691) ) )
& ( ~ hskp27
| ( ndr1_0
& ~ c0_1(a1693)
& ~ c3_1(a1693)
& ~ c2_1(a1693) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c1_1(a1694)
& c2_1(a1694)
& ~ c3_1(a1694) ) )
& ( ~ hskp29
| ( ndr1_0
& c2_1(a1695)
& c0_1(a1695)
& ~ c3_1(a1695) ) )
& ( ~ hskp30
| ( ndr1_0
& c1_1(a1698)
& c3_1(a1698)
& ~ c0_1(a1698) ) )
& ( ~ hskp31
| ( ndr1_0
& c2_1(a1700)
& ~ c0_1(a1700)
& ~ c3_1(a1700) ) )
& ( ~ hskp32
| ( ndr1_0
& c1_1(a1701)
& c0_1(a1701)
& ~ c3_1(a1701) ) )
& ( ~ hskp33
| ( ndr1_0
& c3_1(a1704)
& ~ c0_1(a1704)
& ~ c2_1(a1704) ) )
& ( ~ hskp34
| ( ndr1_0
& c2_1(a1705)
& ~ c3_1(a1705)
& ~ c1_1(a1705) ) )
& ( ~ hskp35
| ( ndr1_0
& ~ c0_1(a1706)
& ~ c3_1(a1706)
& ~ c1_1(a1706) ) )
& ( ~ hskp36
| ( ndr1_0
& ~ c2_1(a1712)
& ~ c0_1(a1712)
& ~ c1_1(a1712) ) )
& ( ~ hskp37
| ( ndr1_0
& c2_1(a1714)
& c0_1(a1714)
& ~ c1_1(a1714) ) )
& ( ~ hskp38
| ( ndr1_0
& c3_1(a1718)
& ~ c2_1(a1718)
& ~ c0_1(a1718) ) )
& ( ~ hskp39
| ( ndr1_0
& ~ c1_1(a1721)
& c3_1(a1721)
& ~ c0_1(a1721) ) )
& ( ~ hskp40
| ( ndr1_0
& c1_1(a1725)
& c3_1(a1725)
& ~ c2_1(a1725) ) )
& ( ~ hskp41
| ( ndr1_0
& c0_1(a1726)
& c2_1(a1726)
& ~ c1_1(a1726) ) )
& ( ~ hskp42
| ( ndr1_0
& c1_1(a1638)
& ~ c3_1(a1638)
& c0_1(a1638) ) )
& ( ~ hskp43
| ( ndr1_0
& ~ c1_1(a1639)
& c2_1(a1639)
& c0_1(a1639) ) )
& ( ~ hskp44
| ( ndr1_0
& c3_1(a1640)
& c2_1(a1640)
& c1_1(a1640) ) )
& ( ~ hskp45
| ( ndr1_0
& ~ c3_1(a1641)
& ~ c1_1(a1641)
& c2_1(a1641) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c2_1(a1642)
& ~ c1_1(a1642)
& c0_1(a1642) ) )
& ( ~ hskp47
| ( ndr1_0
& ~ c1_1(a1644)
& ~ c0_1(a1644)
& c3_1(a1644) ) )
& ( ~ hskp48
| ( ndr1_0
& ~ c3_1(a1649)
& ~ c2_1(a1649)
& c0_1(a1649) ) )
& ( ~ hskp49
| ( ndr1_0
& c3_1(a1651)
& ~ c2_1(a1651)
& c1_1(a1651) ) )
& ( ~ hskp50
| ( ndr1_0
& c3_1(a1652)
& c2_1(a1652)
& c0_1(a1652) ) )
& ( ~ hskp51
| ( ndr1_0
& c2_1(a1653)
& ~ c0_1(a1653)
& c1_1(a1653) ) )
& ( ~ hskp52
| ( ndr1_0
& c0_1(a1654)
& c2_1(a1654)
& c3_1(a1654) ) )
& ( ~ hskp53
| ( ndr1_0
& ~ c3_1(a1656)
& c2_1(a1656)
& c0_1(a1656) ) )
& ( ~ hskp54
| ( ndr1_0
& c3_1(a1658)
& ~ c0_1(a1658)
& c1_1(a1658) ) )
& ( ~ hskp55
| ( ndr1_0
& ~ c2_1(a1661)
& ~ c3_1(a1661)
& c1_1(a1661) ) )
& ( ~ hskp56
| ( ndr1_0
& c0_1(a1662)
& ~ c2_1(a1662)
& c1_1(a1662) ) )
& ( ~ hskp57
| ( ndr1_0
& c0_1(a1665)
& ~ c1_1(a1665)
& c3_1(a1665) ) )
& ( ~ hskp58
| ( ndr1_0
& ~ c0_1(a1668)
& ~ c1_1(a1668)
& c3_1(a1668) ) )
& ( ~ hskp59
| ( ndr1_0
& c3_1(a1669)
& ~ c2_1(a1669)
& c0_1(a1669) ) )
& ( ~ hskp60
| ( ndr1_0
& ~ c1_1(a1673)
& c3_1(a1673)
& c2_1(a1673) ) )
& ( ~ hskp61
| ( ndr1_0
& ~ c1_1(a1674)
& ~ c2_1(a1674)
& c3_1(a1674) ) )
& ( ~ hskp62
| ( ndr1_0
& ~ c3_1(a1675)
& c1_1(a1675)
& c0_1(a1675) ) )
& ( ~ hskp63
| ( ndr1_0
& ~ c0_1(a1676)
& c2_1(a1676)
& c3_1(a1676) ) )
& ( ~ hskp64
| ( ndr1_0
& ~ c3_1(a1686)
& ~ c1_1(a1686)
& c0_1(a1686) ) )
& ( ~ hskp65
| ( ndr1_0
& ~ c3_1(a1687)
& ~ c0_1(a1687)
& c2_1(a1687) ) )
& ( ~ hskp66
| ( ndr1_0
& ~ c1_1(a1692)
& ~ c2_1(a1692)
& c0_1(a1692) ) )
& ( ~ hskp67
| ( ndr1_0
& c1_1(a1702)
& c2_1(a1702)
& c3_1(a1702) ) )
& ( ~ hskp68
| ( ndr1_0
& ~ c1_1(a1707)
& c3_1(a1707)
& c0_1(a1707) ) )
& ( ~ hskp69
| ( ndr1_0
& ~ c1_1(a1709)
& c0_1(a1709)
& c3_1(a1709) ) )
& ( ~ hskp70
| ( ndr1_0
& ~ c0_1(a1710)
& ~ c3_1(a1710)
& c1_1(a1710) ) )
& ( ~ hskp71
| ( ndr1_0
& ~ c2_1(a1713)
& c3_1(a1713)
& c0_1(a1713) ) )
& ( ~ hskp72
| ( ndr1_0
& ~ c2_1(a1715)
& c1_1(a1715)
& c3_1(a1715) ) )
& ( ~ hskp73
| ( ndr1_0
& c2_1(a1716)
& ~ c3_1(a1716)
& c0_1(a1716) ) )
& ( ~ hskp74
| ( ndr1_0
& ~ c3_1(a1717)
& c0_1(a1717)
& c2_1(a1717) ) )
& ( ~ hskp75
| ( ndr1_0
& c0_1(a1724)
& ~ c2_1(a1724)
& c3_1(a1724) ) )
& ( hskp0
| ! [U] :
( ndr1_0
=> ( ~ c2_1(U)
| ~ c0_1(U)
| c3_1(U) ) )
| hskp42 )
& ( hskp43
| hskp44
| hskp45 )
& ( ! [V] :
( ndr1_0
=> ( c0_1(V)
| ~ c1_1(V)
| c2_1(V) ) )
| hskp46
| ! [W] :
( ndr1_0
=> ( ~ c2_1(W)
| c0_1(W)
| ~ c3_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( c2_1(X)
| c0_1(X)
| c3_1(X) ) )
| hskp1
| ! [Y] :
( ndr1_0
=> ( c1_1(Y)
| ~ c0_1(Y)
| c2_1(Y) ) ) )
& ( hskp47
| hskp2
| hskp3 )
& ( ! [Z] :
( ndr1_0
=> ( c1_1(Z)
| c0_1(Z)
| ~ c3_1(Z) ) )
| hskp4
| hskp5 )
& ( ! [X1] :
( ndr1_0
=> ( ~ c0_1(X1)
| ~ c3_1(X1)
| c2_1(X1) ) )
| hskp48
| hskp6 )
& ( ! [X2] :
( ndr1_0
=> ( c2_1(X2)
| c0_1(X2)
| ~ c1_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( c1_1(X3)
| c2_1(X3)
| c0_1(X3) ) )
| hskp49 )
& ( hskp50
| ! [X4] :
( ndr1_0
=> ( ~ c1_1(X4)
| ~ c0_1(X4)
| ~ c2_1(X4) ) )
| hskp51 )
& ( hskp52
| ! [X5] :
( ndr1_0
=> ( ~ c2_1(X5)
| ~ c0_1(X5)
| c3_1(X5) ) )
| hskp7 )
& ( hskp53
| hskp8
| hskp54 )
& ( ! [X6] :
( ndr1_0
=> ( c2_1(X6)
| c3_1(X6)
| c0_1(X6) ) )
| ! [X7] :
( ndr1_0
=> ( ~ c0_1(X7)
| c1_1(X7)
| ~ c2_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( ~ c0_1(X8)
| ~ c3_1(X8)
| ~ c2_1(X8) ) ) )
& ( hskp2
| ! [X9] :
( ndr1_0
=> ( c3_1(X9)
| c1_1(X9)
| ~ c0_1(X9) ) )
| ! [X10] :
( ndr1_0
=> ( ~ c1_1(X10)
| c3_1(X10)
| ~ c0_1(X10) ) ) )
& ( hskp9
| hskp55
| ! [X11] :
( ndr1_0
=> ( ~ c0_1(X11)
| ~ c2_1(X11)
| c3_1(X11) ) ) )
& ( ! [X12] :
( ndr1_0
=> ( ~ c0_1(X12)
| c1_1(X12)
| c3_1(X12) ) )
| ! [X13] :
( ndr1_0
=> ( c2_1(X13)
| c0_1(X13)
| ~ c3_1(X13) ) )
| ! [X14] :
( ndr1_0
=> ( c2_1(X14)
| ~ c3_1(X14)
| ~ c0_1(X14) ) ) )
& ( hskp56
| ! [X15] :
( ndr1_0
=> ( c2_1(X15)
| c3_1(X15)
| c0_1(X15) ) )
| hskp10 )
& ( ! [X16] :
( ndr1_0
=> ( ~ c0_1(X16)
| c2_1(X16)
| ~ c3_1(X16) ) )
| hskp11
| hskp57 )
& ( hskp12
| hskp13
| ! [X17] :
( ndr1_0
=> ( ~ c2_1(X17)
| ~ c3_1(X17)
| ~ c1_1(X17) ) ) )
& ( hskp58
| hskp59
| ! [X18] :
( ndr1_0
=> ( c1_1(X18)
| ~ c0_1(X18)
| c2_1(X18) ) ) )
& ( hskp10
| hskp14
| hskp15 )
& ( ! [X19] :
( ndr1_0
=> ( ~ c2_1(X19)
| c1_1(X19)
| ~ c3_1(X19) ) )
| ! [X20] :
( ndr1_0
=> ( ~ c3_1(X20)
| c2_1(X20)
| c0_1(X20) ) )
| ! [X21] :
( ndr1_0
=> ( c2_1(X21)
| ~ c0_1(X21)
| ~ c3_1(X21) ) ) )
& ( hskp60
| ! [X22] :
( ndr1_0
=> ( c0_1(X22)
| c1_1(X22)
| ~ c3_1(X22) ) )
| ! [X23] :
( ndr1_0
=> ( c3_1(X23)
| ~ c2_1(X23)
| c1_1(X23) ) ) )
& ( ! [X24] :
( ndr1_0
=> ( ~ c1_1(X24)
| ~ c3_1(X24)
| c0_1(X24) ) )
| hskp61
| hskp62 )
& ( ! [X25] :
( ndr1_0
=> ( ~ c1_1(X25)
| ~ c2_1(X25)
| c3_1(X25) ) )
| ! [X26] :
( ndr1_0
=> ( ~ c0_1(X26)
| ~ c3_1(X26)
| c1_1(X26) ) )
| ! [X27] :
( ndr1_0
=> ( c0_1(X27)
| ~ c3_1(X27)
| c1_1(X27) ) ) )
& ( hskp63
| ! [X28] :
( ndr1_0
=> ( c1_1(X28)
| ~ c0_1(X28)
| ~ c3_1(X28) ) )
| ! [X29] :
( ndr1_0
=> ( ~ c2_1(X29)
| ~ c1_1(X29)
| ~ c3_1(X29) ) ) )
& ( ! [X30] :
( ndr1_0
=> ( ~ c0_1(X30)
| c1_1(X30)
| ~ c3_1(X30) ) )
| hskp16
| hskp17 )
& ( hskp60
| hskp18
| ! [X31] :
( ndr1_0
=> ( c1_1(X31)
| ~ c2_1(X31)
| c3_1(X31) ) ) )
& ( hskp19
| ! [X32] :
( ndr1_0
=> ( ~ c0_1(X32)
| ~ c1_1(X32)
| c3_1(X32) ) )
| hskp20 )
& ( ! [X33] :
( ndr1_0
=> ( ~ c1_1(X33)
| c0_1(X33)
| c2_1(X33) ) )
| hskp21
| ! [X34] :
( ndr1_0
=> ( ~ c1_1(X34)
| c2_1(X34)
| c3_1(X34) ) ) )
& ( ! [X35] :
( ndr1_0
=> ( ~ c2_1(X35)
| c0_1(X35)
| c3_1(X35) ) )
| hskp22
| ! [X36] :
( ndr1_0
=> ( c3_1(X36)
| ~ c0_1(X36)
| c2_1(X36) ) ) )
& ( hskp23
| hskp64
| hskp65 )
& ( hskp61
| hskp24
| ! [X37] :
( ndr1_0
=> ( ~ c3_1(X37)
| c1_1(X37)
| c0_1(X37) ) ) )
& ( hskp25
| ! [X38] :
( ndr1_0
=> ( c1_1(X38)
| c0_1(X38)
| c3_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( ~ c1_1(X39)
| ~ c3_1(X39)
| c0_1(X39) ) ) )
& ( ! [X40] :
( ndr1_0
=> ( ~ c2_1(X40)
| ~ c3_1(X40)
| ~ c0_1(X40) ) )
| hskp26
| ! [X41] :
( ndr1_0
=> ( ~ c2_1(X41)
| ~ c3_1(X41)
| c1_1(X41) ) ) )
& ( hskp66
| hskp27
| hskp28 )
& ( hskp29
| hskp52
| hskp53 )
& ( ! [X42] :
( ndr1_0
=> ( ~ c0_1(X42)
| ~ c1_1(X42)
| c2_1(X42) ) )
| ! [X43] :
( ndr1_0
=> ( c0_1(X43)
| ~ c3_1(X43)
| c1_1(X43) ) )
| hskp30 )
& ( hskp63
| hskp31
| hskp32 )
& ( ! [X44] :
( ndr1_0
=> ( c1_1(X44)
| ~ c3_1(X44)
| ~ c2_1(X44) ) )
| ! [X45] :
( ndr1_0
=> ( ~ c3_1(X45)
| ~ c0_1(X45)
| c1_1(X45) ) )
| hskp67 )
& ( ! [X46] :
( ndr1_0
=> ( c2_1(X46)
| ~ c0_1(X46)
| ~ c3_1(X46) ) )
| hskp61
| hskp33 )
& ( hskp34
| ! [X47] :
( ndr1_0
=> ( ~ c1_1(X47)
| ~ c3_1(X47)
| c2_1(X47) ) )
| ! [X48] :
( ndr1_0
=> ( c1_1(X48)
| ~ c0_1(X48)
| ~ c2_1(X48) ) ) )
& ( hskp35
| hskp68
| ! [X49] :
( ndr1_0
=> ( c0_1(X49)
| ~ c1_1(X49)
| c2_1(X49) ) ) )
& ( ! [X50] :
( ndr1_0
=> ( c2_1(X50)
| ~ c1_1(X50)
| ~ c3_1(X50) ) )
| ! [X51] :
( ndr1_0
=> ( ~ c1_1(X51)
| ~ c0_1(X51)
| ~ c3_1(X51) ) )
| hskp13 )
& ( hskp69
| ! [X52] :
( ndr1_0
=> ( ~ c1_1(X52)
| c2_1(X52)
| c3_1(X52) ) )
| ! [X53] :
( ndr1_0
=> ( ~ c3_1(X53)
| c0_1(X53)
| c1_1(X53) ) ) )
& ( hskp70
| ! [X54] :
( ndr1_0
=> ( c1_1(X54)
| c0_1(X54)
| ~ c2_1(X54) ) )
| ! [X55] :
( ndr1_0
=> ( c2_1(X55)
| c0_1(X55)
| c3_1(X55) ) ) )
& ( ! [X56] :
( ndr1_0
=> ( ~ c2_1(X56)
| ~ c1_1(X56)
| ~ c0_1(X56) ) )
| ! [X57] :
( ndr1_0
=> ( c2_1(X57)
| ~ c1_1(X57)
| ~ c3_1(X57) ) )
| hskp0 )
& ( ! [X58] :
( ndr1_0
=> ( c2_1(X58)
| ~ c1_1(X58)
| c0_1(X58) ) )
| hskp36
| hskp71 )
& ( ! [X59] :
( ndr1_0
=> ( c2_1(X59)
| c1_1(X59)
| c3_1(X59) ) )
| ! [X60] :
( ndr1_0
=> ( c1_1(X60)
| c2_1(X60)
| c0_1(X60) ) )
| ! [X61] :
( ndr1_0
=> ( c3_1(X61)
| ~ c0_1(X61)
| ~ c2_1(X61) ) ) )
& ( hskp37
| ! [X62] :
( ndr1_0
=> ( c3_1(X62)
| c0_1(X62)
| c2_1(X62) ) )
| hskp72 )
& ( hskp73
| ! [X63] :
( ndr1_0
=> ( ~ c1_1(X63)
| ~ c3_1(X63)
| c0_1(X63) ) )
| ! [X64] :
( ndr1_0
=> ( ~ c3_1(X64)
| ~ c2_1(X64)
| c1_1(X64) ) ) )
& ( hskp74
| hskp38
| ! [X65] :
( ndr1_0
=> ( ~ c3_1(X65)
| ~ c2_1(X65)
| ~ c0_1(X65) ) ) )
& ( ! [X66] :
( ndr1_0
=> ( ~ c1_1(X66)
| ~ c0_1(X66)
| ~ c3_1(X66) ) )
| hskp47
| ! [X67] :
( ndr1_0
=> ( ~ c0_1(X67)
| c3_1(X67)
| c2_1(X67) ) ) )
& ( ! [X68] :
( ndr1_0
=> ( c1_1(X68)
| c2_1(X68)
| ~ c3_1(X68) ) )
| ! [X69] :
( ndr1_0
=> ( ~ c3_1(X69)
| ~ c0_1(X69)
| ~ c1_1(X69) ) )
| ! [X70] :
( ndr1_0
=> ( ~ c0_1(X70)
| c2_1(X70)
| c1_1(X70) ) ) )
& ( ! [X71] :
( ndr1_0
=> ( ~ c2_1(X71)
| c1_1(X71)
| c3_1(X71) ) )
| hskp57
| ! [X72] :
( ndr1_0
=> ( c2_1(X72)
| c3_1(X72)
| ~ c0_1(X72) ) ) )
& ( hskp39
| ! [X73] :
( ndr1_0
=> ( c0_1(X73)
| ~ c3_1(X73)
| ~ c2_1(X73) ) )
| ! [X74] :
( ndr1_0
=> ( c2_1(X74)
| ~ c0_1(X74)
| ~ c3_1(X74) ) ) )
& ( ! [X75] :
( ndr1_0
=> ( c0_1(X75)
| c1_1(X75)
| ~ c3_1(X75) ) )
| hskp29
| ! [X76] :
( ndr1_0
=> ( ~ c0_1(X76)
| c1_1(X76)
| ~ c3_1(X76) ) ) )
& ( hskp61
| ! [X77] :
( ndr1_0
=> ( c2_1(X77)
| ~ c0_1(X77)
| ~ c1_1(X77) ) )
| ! [X78] :
( ndr1_0
=> ( ~ c0_1(X78)
| c2_1(X78)
| c3_1(X78) ) ) )
& ( ! [X79] :
( ndr1_0
=> ( ~ c2_1(X79)
| c3_1(X79)
| ~ c1_1(X79) ) )
| hskp75
| ! [X80] :
( ndr1_0
=> ( ~ c3_1(X80)
| c1_1(X80)
| c2_1(X80) ) ) )
& ( ! [X81] :
( ndr1_0
=> ( c1_1(X81)
| ~ c2_1(X81)
| c3_1(X81) ) )
| hskp40
| ! [X82] :
( ndr1_0
=> ( ~ c0_1(X82)
| ~ c1_1(X82)
| ~ c3_1(X82) ) ) )
& ( ! [X83] :
( ndr1_0
=> ( c2_1(X83)
| ~ c1_1(X83)
| c0_1(X83) ) )
| hskp41
| hskp30 ) ) ).
%--------------------------------------------------------------------------