TPTP Problem File: SYN397^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN397^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Syntactic
% Problem : Kalish and Montague Problem 204
% Version : [Ben12] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [KM64] Kalish & Montegue (1964), Logic: Techniques of Formal
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GSY397+1 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.43 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.43 v5.5.0
% Syntax : Number of formulae : 74 ( 33 unt; 37 typ; 32 def)
% Number of atoms : 134 ( 36 equ; 0 cnn)
% Maximal formula atoms : 28 ( 3 avg)
% Number of connectives : 177 ( 5 ~; 5 |; 9 &; 148 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 182 ( 182 >; 0 *; 0 +; 0 <<)
% Number of symbols : 45 ( 43 usr; 8 con; 0-3 aty)
% Number of variables : 94 ( 53 ^; 34 !; 7 ?; 94 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of SYN397+1
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(f_type,type,
f: mu > $i > $o ).
thf(kalish204,conjecture,
( mvalid
@ ( mand
@ ( mbox_s4
@ ( mimplies
@ ( mbox_s4
@ ( mnot
@ ( mexists_ind
@ ^ [X: mu] : ( mbox_s4 @ ( f @ X ) ) ) ) )
@ ( mbox_s4
@ ( mforall_ind
@ ^ [Y: mu] : ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( f @ Y ) ) ) ) ) ) ) )
@ ( mbox_s4
@ ( mimplies
@ ( mbox_s4
@ ( mforall_ind
@ ^ [Y: mu] : ( mbox_s4 @ ( mnot @ ( mbox_s4 @ ( f @ Y ) ) ) ) ) )
@ ( mbox_s4
@ ( mnot
@ ( mexists_ind
@ ^ [X: mu] : ( mbox_s4 @ ( f @ X ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------