TPTP Problem File: SYN386^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN386^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem X2138
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0369 [Bro09]
% : tps_0402 [Bro09]
% : X2138 [TPS]
% : THM82 [TPS]
% : THM82A [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.17 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.25 v6.4.0, 0.29 v6.3.0, 0.33 v6.1.0, 0.17 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.50 v5.0.0, 0.25 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 10 ( 0 equ; 0 cnn)
% Maximal formula atoms : 10 ( 10 avg)
% Number of connectives : 33 ( 0 ~; 0 |; 3 &; 24 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 3 usr; 0 con; 2-3 aty)
% Number of variables : 17 ( 0 ^; 11 !; 6 ?; 17 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(cD,type,
cD: $i > $i > $i > $o ).
thf(cF,type,
cF: $i > $i > $o ).
thf(cS,type,
cS: $i > $i > $o ).
thf(cX2138,conjecture,
( ( ! [Xx: $i] :
? [Xy: $i] : ( cF @ Xx @ Xy )
& ? [Xx: $i] :
! [Xe: $i] :
? [Xn: $i] :
! [Xw: $i] :
( ( cS @ Xn @ Xw )
=> ( cD @ Xw @ Xx @ Xe ) )
& ! [Xe: $i] :
? [Xd: $i] :
! [Xa: $i,Xb: $i] :
( ( cD @ Xa @ Xb @ Xd )
=> ! [Xy: $i,Xz: $i] :
( ( ( cF @ Xa @ Xy )
& ( cF @ Xb @ Xz ) )
=> ( cD @ Xy @ Xz @ Xe ) ) ) )
=> ? [Xy: $i] :
! [Xe: $i] :
? [Xm: $i] :
! [Xw: $i] :
( ( cS @ Xm @ Xw )
=> ! [Xz: $i] :
( ( cF @ Xw @ Xz )
=> ( cD @ Xz @ Xy @ Xe ) ) ) ) ).
%------------------------------------------------------------------------------