TPTP Problem File: SYN367^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN367^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Syntactic
% Problem : Peter Andrews Problem X2118
% Version : [Ben12] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [And86] Andrews (1986), An Introduction to Mathematical Logic
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-GSY367+1 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.30 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.86 v6.1.0, 0.71 v5.5.0
% Syntax : Number of formulae : 76 ( 33 unt; 39 typ; 32 def)
% Number of atoms : 133 ( 36 equ; 0 cnn)
% Maximal formula atoms : 27 ( 3 avg)
% Number of connectives : 176 ( 5 ~; 5 |; 9 &; 147 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 185 ( 185 >; 0 *; 0 +; 0 <<)
% Number of symbols : 47 ( 45 usr; 8 con; 0-3 aty)
% Number of variables : 93 ( 52 ^; 34 !; 7 ?; 93 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Goedel translation of SYN367+1
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(p_type,type,
p: $i > $o ).
thf(big_r_type,type,
big_r: mu > $i > $o ).
thf(big_q_type,type,
big_q: mu > $i > $o ).
thf(x2118,conjecture,
( mvalid
@ ( mbox_s4
@ ( mimplies
@ ( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] : ( mor @ ( mand @ ( mbox_s4 @ p ) @ ( mbox_s4 @ ( big_q @ X ) ) ) @ ( mand @ ( mbox_s4 @ ( mnot @ ( mbox_s4 @ p ) ) ) @ ( mbox_s4 @ ( big_r @ X ) ) ) ) ) )
@ ( mor
@ ( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] : ( mbox_s4 @ ( big_q @ X ) ) ) )
@ ( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] : ( mbox_s4 @ ( big_r @ X ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------